Title

使用化學浴法製備之硫化銅之氧化鋅/硫化銅奈米結構之研究

Translated Titles

A study of ZnO/CuS nanostructures using CBD-deposited CuS

Authors

許志豪

Key Words

化學浴 ; 氧化鋅 ; 硫化銅 ; 奈米結構 ; CBD ; ZnO ; CuS ; nanostructures

PublicationName

中興大學物理學系所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

龔志榮

Content Language

英文

Chinese Abstract

在本論文研究中,氧化鋅/硫化銅奈米結構分別採用原子層沉積法(ALD)及化學浴沉積法(CBD)製備而成。氧化鋅奈米柱ALD沈積使用二乙基鋅(DEZn)和氧化亞氮(N2O)前驅氣體將氧化鋅(ZnO)奈米柱沈積在c面藍寶石基板(c-plane sapphire)。硫化銅殼層結構則使用硫酸銅與硫代硫酸鈉溶液以CBD生長於氧化鋅奈米柱側壁。氧化鋅/硫化銅奈米結構之樣品分別採用高解像能穿透式電子顯微術(HRTEM),掃描式電子顯微術(SEM),X-射線繞射分析(XRD)分析其物理特性以及表面形貌。研究結果發現氧化鋅/硫化銅 核心/殼層結構可透過ALD-ZnO及CBD-CuS的沈積方式合成。

English Abstract

In this thesis, ZnO/CuS nanostructures were achieved by atomic-layer deposited (ALD) ZnO nanorods and chemical bath deposited(CBD) CuS shells. In this case, ZnO nanorods were deposited on a c-plane sapphire substrates by ALD, using diethylzinc (DEZn) and nitrous oxide (N2O) as precursors. CuS shells were then deposited on the side walls of ZnO nanorods by CBD using mixed copper sulfate and sodium thiosulfate solution. The physical properties and surface morphologies of ZnO /CuS nanostructures were investigated by high resolution transmission electron microscopy(HRTEM), scanning electron microscopy (SEM) and x-ray diffractometry (XRD). It was found that the ZnO/CuS core/shell structures had been successfully synthesis by the method of CBD

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
Reference
  1. [1] Jianwei Miao, Hong Bin Yang, Si Yun Khoo and Bin Liu, Nanoscale, 22 (2013) 352.
    連結:
  2. [2] Chen M. , Tang Y. , Li B, Luo L. , Nanoscience Nanotechnology, 8 (2009) 1505.
    連結:
  3. [5] Dasom Park, Havid Aqoma, Ilhwan Ryu, Sanggyu Yim and Sung-Yeon Jang, IEEE Journal of Selected Topics in Quantum Electronics, 22 (2016) 352.
    連結:
  4. [6] R. Vogel, P. Hoyer, H. Weller, Phys. Chem.,12 (1994) 3183.
    連結:
  5. [7] Khaselev, O. and Turner J, Science, 28 (1998) 425.
    連結:
  6. , 26 (2010) 132.
    連結:
  7. [11] Y. Qiao, H. Chen, Y. Lin, and J. Huang, Langmuir, 27 (2011) 11090.
    連結:
  8. [12] Z. L. Wang, Materials Science and Engineering: R: Reports, 64 (2009) 33. 

    連結:
  9. [16] SUMIO IIJIMA, Nature, 354 
(1991) 56.
    連結:
  10. [17] J. G. Lu, P. Chang and Z. Fan, Materials Science and Engineering: R: Reports, 52 (2006) 49. 

    連結:
  11. [22] Baldassare Di Bartolo and Clyfe Beckwith, “Optical Properties of Excited States in Solids”, Springer US (1992).
    連結:
  12. [24] A. B. Djuriˇsic ́, A. M. C. Ng, and X. Y. Chen, Material Properties and Device Applications, 34 (2010) 191. 

    連結:
  13. Physical Chemistry Chemical Physics, 40 (2013) 164.
    連結:
  14. [36] Shibin Li, Peng Zhang, Yafei Wang, Hojjatollah Sarvari, Detao Liu, Jiang Wu, Yajie Yang, Zhiming Wang and Zhi David Chen, Nano Research, 10 (2017)1092.
    連結:
  15. [39] Stokes, Debbie J, “Principles and Practice of Variable Pressure Environmental Scanning Electron Microscopy”, John Wiley & Sons (2008).
    連結:
  16. [3] Guorui Yang, Wei Yan, Qian Zhang, Shaohua Shen and Shujiang Ding, Nanoscale, 24 (2013) 11983.
  17. [4] Shawn M. Willis, Cheng Cheng, Hazel E. Assender and Andrew A. R. Watt, Nano Letters, 12 (2012) 1522.
  18. [8] DekaS, GenoveseA, ZhangY, MisztaK, BertoniG, Krahne R, Giannini C and Manna L, Journal of the American Chemical Society
  19. [9] Yue Wu, Cyrus Wadia , Wanli Ma, Bryce Sadtler and A. Paul Alivisatos, Nano Letters, 8 (2008) 2551.
  20. [10] Buzea, Cristina, Pacheco, Ivan Robbie and Kevin, Biointerphases, 2 (2007) 1116.
  21. [13] Z. L. Wang, Advanced Materials, 15 (2007) 7.
  22. [14] K. Kimoto and I. Nishida. Japanese Journal of Applied Physics, 22 (1967) 940. 

  23. [15] H. Wang, S. Baek, J. Song, J. Lee and S. Lim, Nanotechnology, 19 (2008) 756. 

  24. [18] S. Barth, F. H. Ramirez, J. D. Holmes, and A. R. Rodriguez, Progress in Materials Science, 55 (2010) 563. 

  25. [19] K. J. Choi and H. W. Jang, Sensors, 10 (2010)
4083. 

  26. [20] B. Sun, and H. Sirringhaus, Nano Letters, 5 (2005) 2408.
  27. [21] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nature Materials, 4 (2005) 455.
  28. [23] W. W. Gerberich, W. M. Mook, C. R. Perrey, C. B. Carter, M. I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P. H. McMurry, and S. L. Girshick, J. Mech. Phys. Solids, 51 (2003) 979.
  29. [25] Mika Niskanen, Mikael Kuisma, Oana Cramariuc, Viacheslav Golovanov, Terttu I. Hukka, Nikolai Tkachenko and Tapio T. Rantala ,
  30. [26] F. Claeyssens, C. L. Freeman, N. L. Allan, Y. Sun, M. N. R. Ashfolda and J. H. Harding, Journal of Materials Chemistry, 15 (2005) 139.
  31. [27] Y. W. Heo, D. P. Nortona, L. C. Tiena, Y. Kwon, B. S. Kangb, F. Renb, S. J. Pearton and J. R. LaRoche, Materials Science and Engineering: A., 47 (2004) 163.
  32. [28] H. Yi, X. Chen, H. Wang, and X. Wang, Electrochimica Acta, 116 (2014) 372.
  33. [29] Manoj B. Gawande, Anandarup Goswami, Dong-Liang Peng, Radek Zboril and Rajender S. Varma, Chemical Society Reviews, 21 (2015) 7431.
  34. [30] Miri Kazes, Tsiala Saraidarov, Renata Reisfeld, Uri Banin, Advanced Materials, 17 (2012) 22.
  35. [31] Sungjee Kim, Brent Fisher, Hans-Jürgen Eisler and Moungi Bawendi, Journal of the American Chemical Society ,125 (2003) 11466.
  36. [32] P.K. Nair, V.M. Garcı́a,O.L. Arenas, Y. Peña, A. Castillo, I.T. Ayala, O. Gomezdaza, A. Sánchez. , J Campos, H.Hu, R. Suárez and M. ERincón, Solar Energy Materials and Solar Cells, 52 (1998) 313.
  37. [33] DekaS, GenoveseA, ZhangY, MisztaK, BertoniG, Krahne R, Giannini C and Manna, Journal of the American Chemical Society
  38. ,132 (2010) 891.
  39. [34] WuY, WadiaC, MaWL, Sadtler B and Alivisatos, Nano Letters, 8 (2008) 2551.

  40. [35]A. Venkadesh, S. Radhakrishnan and J. Mathiyarasu, Electrochimica Acta, 6 (2017) 77.
  41. [37] Kheamrutai Thamaphat, Pichet Limsuwan and Boonlaer Ngotawornchai, Natural Science, 42 (2008)357.
  42. [38]Dale E. Newbury, Patrick Echlin, David C. Joy and Eric Lifshin, “Scanning Electron Microscopy and X-Ray Microanalysis” , Springer(1992).