Title

鋁鉻鉭鈦鉻高熵合金氮化物薄膜疊層結構製備與擴散阻障性質之研究

Translated Titles

Preparation and Diffusion Barrier Property of AlCrTaTiZr High-Entropy-Alloy Nitride Film Stacks

DOI

10.6845/NCHU.2009.00159

Authors

陳道生

Key Words

內連線 ; 擴散阻障層 ; 高熵合金 ; 氮化物 ; interconnect ; diffusion barrier ; high entropy alloy ; nitride

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

張守一

Content Language

繁體中文

Chinese Abstract

在半導體銅內連線結構中,為了防止銅迅速擴散進入元件內,須在介電層與銅導線間沉積一具高熱穩定性、低電阻係數及良好界面附著性之有效擴散阻障層。因此本研究以射頻磁控濺鍍法沉積鋁鉻鉭鈦鋯 (AlCrTaTiZr) 五元高熵合金 (High-Entropy Alloy,簡稱 HEA) 及其氮化物 (HEA Nitride,簡稱 HEAN) 薄膜,並探討各種不同薄膜疊層結構之擴散阻障特性,期望開發出擴散阻障性質優越之材料。薄膜沉積時同時通入氮氣及氬氣,氮氣流量比設定為 0%、10% 及 30%,可分別得到 HEA、HEAN0.7 (氮含量約 41%) 及 HEAN1 (氮含量約 50%) 薄膜,五種金屬元素之含量則約為等莫耳;所鍍製之擴散阻障層包括 HEAN0.7/HEA 雙層 (10 nm/5 nm)、HEAN1 單層 (10 nm)、HEAN1/HEA 雙層 (10 nm/5 nm) 及 HEAN1/HEAN0.7 雙層 (10 nm/5 nm) 結構。經擴散阻障性質分析發現,Si/HEAN0.7/HEA/Cu 疊層結構於 800°C 退火下,未出現任何反應析出相,且其電阻率仍維持在低值,顯示在此溫度下HEAN0.7/HEA 雙層結構能有效阻障銅矽之交互擴散;而於 900°C 退火下,開始出現 Cu3Si 結晶相,且電阻率逐漸上升,顯示此雙層結構已失去其擴散阻障能力。而 Si/HEAN1/Cu、Si/HEAN1/HEA/Cu 及 Si/HEAN1/HEAN0.7/Cu 雙層結構則於 900°C 退火下,未出現任何反應析出相,且電阻率仍維持在低值,顯示HEAN1 單層、HEAN1/HEA 雙層及 HEAN1/HEAN0.7 雙層結構均具有相當優越之擴散阻障能力;同時,HEA 和 HEAN0.7 緩衝層確實有增加銅膜與阻障層附著力之效果。

English Abstract

To inhibit rapid Cu diffusion in interconnect structures, an effective diffusion barrier layer with high thermal stability, low electrical resistivity and good interface adhesion is demanded. In this study, an AlCrTaTiZr five-element high-entropy alloy (HEA) and its nitride (HEAN) films were deposited by reactive radio-frequency magnetron sputtering in an Ar+N2 mixed atmosphere. The N2 flow ratio (N2/(Ar+N2)) was set as 0%, 10% and 30% to obtain HEA (0% N), unsaturated HEAN0.7 (~ 41% N) and saturated HEAN1 (~ 50% N) films respectively. Barrier properties of HEAN0.7/HEA (10/5 nm), HEAN1 (10 nm), HEAN1/HEA (10/5 nm) and HEAN1/HEAN0.7 (10/5 nm) structures to Cu diffusion were investigated under annealing at 700 to 900°C. From the analyses of diffusion behaviors, it was found that, in the Si/HEAN0.7/HEA/Cu stack, no reaction or interdiffusion occurred at 800°C, and the electrical resistivity remained at a low level, implying the good diffusion resistance of the HEAN0.7/HEA structure at this temperature. A Cu3Si crystalline phase appeared at 900°C, and the electrical resistivity obviously increased, indicating the failure of the structure as a diffusion barrier. In comparison, for the Si/HEAN1/Cu, Si/HEAN1/HEA/Cu and Si/HEAN1/HEAN0.7/Cu structures, no reaction or interdiffusion occurred after annealing at even 900°C, and the electrical resistivity remained at low levels, implying the superior diffusion barrier properties of these structures. Moreover, the HEA and HEAN0.7 buffer layers improved the adhesion of barrier layers to copper.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [1] S.P. Murarka, “Multilevel interconnections for ULSI and GSI era”, Mater. Sci. Eng., R., 19 (1997) 87-151.
    連結:
  2. [2] C.A. Chang, “Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures ”, J. Appl. Phys., 67 (1990) 566-569.
    連結:
  3. [3] L. Stolt, and F.M. D’Heurle, “The formation of Cu3Si marker experiments”, Thin Solid Films, 189 (1990) 269-274.
    連結:
  4. [4] M.H. Tsai, S.C. Sun, C.E. Tsai, S.H. Chuang, and H.T. Chiu, “Comparison of the diffusion barrier properties of chemical vapor deposited TaN and sputtered TaN between Cu and Si”, J. Appl. Phys., 79 (1996) 6032-6938.
    連結:
  5. [5] K.H. Min, K.C. Chun, and K.B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization”, J. Vac. Sci. Technol. B, 14 (1996) 3263-3269.
    連結:
  6. [6] K.C. Park, K.B. Kim, I.J.M.M. Raaijmakers, and K. Ngan, “The effect of density and microstructure on the performance of TiN barrier films in Cu metallization”, J. Appl. Phys., 80 (1996) 5674-5681.
    連結:
  7. [7] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN microstructure on diffusion barrier properties in Cu metallization”, J. Electrochem. Soc., 145 (1998) 2164-2167.
    連結:
  8. [8] H.Y. Cheng, Y.C. Chen, C.M. Lee, R.J. Chung, and T.S. Chin, “Thermal stability and electrical resistivity of SiTaNx heating layer for Phase-Change Memories”, J. Electrochem. Soc., 153 (2006) 685-691.
    連結:
  9. [9] S. Rawal, D.P. Norton, H. Ajmera, T.J. Anderson, and L. McElwee-White, “Properties of Ta–Ge–(O)N as a diffusion barrier for Cu on Si”, Appl. Phys. Lett., 70 (2007) 051913.
    連結:
  10. [10] P. Majumdera, and C. Takoudis, “Reactively Sputtered Mo–V Nitride Thin Films as Ternary Diffusion Barriers for Copper Metallization”, J. Electrochem. Soc., 155 (2008) 703-706.
    連結:
  11. [11] C.W. Chen, J.S. Chen, and J.S. Jeng, “Improvement on the Diffusion Barrier Performance of Reactively Sputtered Ru–N Film by Incorporation of Ta”, J. Electrochem. Soc., 155.(2008) 438-442.
    連結:
  12. [12] P. Majumder, and C.G. Takoudis, “Investigation on the diffusion barrier properties of sputtered Mo/W–N thin films in Cu interconnects” Appl. Phys. Lett., 91 (2007) 162108.
    連結:
  13. [13] P. Majumder, and C. Takoudis, “Thermal stability of Ti/Mo and Ti/MoN nanostructures for barrier applications in.Cu interconnects”, Nanotechnology, 19 (2008) 205202.
    連結:
  14. [14] L.C. Leu, D.P. Norton, L. McElwee-White, and T.J. Anderson, “Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects” , Appl. Phys. Lett., 92 (2008) 111917.
    連結:
  15. [15] C.H. Lai, S.J. Lin, J.W. Yeh, and S.Y. Chang, “Preparation and Characterization of AlCrTaTiZr Multi-element Nitride Coatings”, Surf. Coat. Tech., 201 (2006) 3275-3280.
    連結:
  16. [16] M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, and J.Y. Gan, “Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization”, Appl. Phys. Lett., 92 (2008) 052109.
    連結:
  17. [17] K.T. Nam, A. Datta, S.H. Kim, and K.B. Kim, “Improved diffusion barrier by stuffing the grain boundaries of TiN with a thin Al interlayer for Cu metallization”, Appl. Phys. Lett., 79 (2001) 2549-2551.
    連結:
  18. [18] J.C. Chuang, S.L. Tu, and M.C. Chen, “Sputtered Cr and reactively sputtered CrN serving as barrier layers against Copper diffusion”, J. Electrochem. Soc., 145 (1998) 4290-4296.
    連結:
  19. [19] M.T. Wang, Y.C. Lin, and M.C. Chen, “Barrier properties of very thin Ta and TaN layers against Copper diffusion”, J. Electrochem. Soc., 145 (1998) 2538-2545.
    連結:
  20. [20] M.Y. Kwak, D.H. Shin, T.W. Kang, and K.N. Kim, “Characteristics of TiN barrier layer against Cu diffusion”, Thin Solid Films, 339 (1999) 290-293.
    連結:
  21. [21] M.B. Takeyama, A. Noya, and K. Sakanishi, “Diffusion barrier properties of ZrN films in the Cu/Si contact systems”, J. Vac. Sci. Technol. B, 18 (2000) 1333-1337.
    連結:
  22. [24] S.P. Murarka, and S.W. Hymes, “Copper metallization for ULSL and beyond”, Crit.l Rev. Solid State, 20 (1995) 87-124.
    連結:
  23. [29] A. Noya, and K. Sasaki, “Auger Electron Spectroscopy Study on the Characterization and Stability of the Cu9Al4/TiN/Si System”, Jpn. J. Appl. Phys., 30 (1991) 1760-1763.
    連結:
  24. [30] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern, “Study of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization”, Microelectron. Eng., 33 (1997) 269-275.
    連結:
  25. [31] T. Oku, E. Kawakami, M. Uecubo, K. Takahiro, S.Yamaguchi, and M. Murakami, “Diffusion barrier property of TaN between Si and Cu”, Appl. Surf. Sci., 99 (1996) 265-272.
    連結:
  26. [32] S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, “Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals”, J. Electrochem. Soc., 153 (2006) 578-581.
    連結:
  27. [33] Y. Liu, S. Song, D. Mao, H. Ling, and M. Li, “Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si”, Microelectron. Eng., 75 (2004) 309-315.
    連結:
  28. [34] Y. Wang, F. Cao, Y.T. Liu, and M.H. Ding, “Investigation of Zr–Si–N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization”, Appl. Phys. Lett., 92 (2008) 032108.
    連結:
  29. [35] S.Y. Chang, and C.L. Lu, “Thermal Stability and Interface Diffusion Behaviors of Electrolessly Deposited CoWP and Cu Films”, J. Electrochem. Soc., 155 (2008) 234-243.
    連結:
  30. [36] S.T. Lin, and C. Lee, “Characteristics of sputtered Ta–B–N thin films as diffusion barriers between copper and silicon”, Appl. Surf. Sci., 253 (2006) 1215-1221.
    連結:
  31. [37] L.C. Leu, D.P. Norton, L. McElwee-White, and T.J. Anderson, “Properties of reactively sputtered W–B–N thin film as a diffusion barrier for Cu metallization on Si”, Applied Physics A Material Science & Processing , 94 (2009) 691-695.
    連結:
  32. [38] S.H. Kwon, O.K. Kwon, J.S. Min, and S.W. Kang, “Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals”, J. Electrochem. Soc., 153 (2006) 578-581.
    連結:
  33. [39] Y.L. Kuo, C. Lee,T, J.C. Lin, Y.W. Yen, and W.H. Lee, “Evaluation of the thermal stability of reactively sputtered (Ti, Zr)Nx nano-thin films as diffusion barriers between Cu and Silicon”, Thin Solid Films, 484 (2005) 265-271.
    連結:
  34. [40] C.W. Chen, J.S. Chen, and J.S. Jeng, “Improvement on the Diffusion Barrier Performance of Reactively Sputtered Ru–N Film by Incorporation of Ta”, J. Electrochem. Soc., 155 (2008) 438-442.
    連結:
  35. [41] S. Rawal, D.P. Norton, K. Kim, T.J. Anderson, and L. McElwee-White, “Ge/HfNx diffusion barrier for Cu metallization on Si”, Appl. Phys. Lett., 89 (2006) 231914.
    連結:
  36. [42] X.P. Qu, J.J. Tan, M. Zhou, T. Chen, Q. Xie, G.P. Ru, and B.Z. Li, “Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization”, Appl. Phys. Lett., 88 (2006) 151912 .
    連結:
  37. [43] A. Lindsay Greer, Nature, 366 (1993) 303.
    連結:
  38. [45] J.W. Yeh, S.K.Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Adv. Eng. Mater., 6 (2004) 299-303.
    連結:
  39. [47] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Adv. Eng. Mater., 6 (2004) 299-303.
    連結:
  40. [48] C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, “Mechanical Performance of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements”, Metall. Mater. Trans. A, 36 (2005) 1263-1271.
    連結:
  41. [49] 賴加瀚,“Al-Cr-Ta-Ti-Zr-N 多元氮化物薄膜之製備與性質研究”,國立清華大學材料科學工程研究所博士論文,2007 年。
    連結:
  42. [50] S.Y. Chang, M.K. Chen, and D.A Chen, “Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Copper metallization”, J. Electrochem. Soc., 156 (2009) 37-42.
    連結:
  43. [51] 陳明谷,“鋁鉻鉭鈦鋯多元高熵合金氮化物薄膜製備與擴散阻障性質之研究”,國立中興大學材料科學與工程學系碩士論文,2008 年。
    連結:
  44. [52] L.K. Elbaum, M. Wittmer, C.Y. Ting, and J.J. Cuomo, “ZrN diffusion barrier in aluminum metallization schemes”, Thin Solid Films, 104 (1983) 81-87.
    連結:
  45. [53] M. Damayanti, T. Sritharan, S.G. Mhaisalkar, and Z.H. Gan, “Effects of dissolved nitrogen in improving barrier properties of ruthenium”, Appl. Phys. Lett., 88 (2006) 044101.
    連結:
  46. [22] J.J. Sniegowski, “Moving the World with Surface Micromachining”, Solid State Technology, 39 (1996) 83-87.
  47. [23] 陳力俊,“微電子材料與製程”,中國材料科學學會,2002 年。
  48. [25] R.S. Muller, and T.I. Kamins, “Device Electronics for Integrated Circuits”, 2nd ed., John Wiley & Sons, New York, (1986) p. 1-56.
  49. [26] R.C. Weast, CRC Handbook of Chemistry and Physics, The Chemical Rubber Co., 1970.
  50. [27] 莊達人,“VLSI 製造技術”,高立出版社,2006 年。
  51. [28] International Technology Roadmap for Semiconductors-2006 Updates, http://www.itrs.net/Links/2006Update/FinalToPost/09_Interconnect2006Update.pdf (lastaccessed on April 10, 2008).
  52. [44] Handbook Committee, Metals Handbook, Ed. 10, Vol. 3 (Eds: H. Baker), ASM International, Metals Park, OH, 1992.
  53. [46] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, in Cohesion in Metals: Transition Metal Alloys (Eds: F.R. de Boer, D.G. Pettifor), Elsevier, New York, 1988, Ch. 1 and 2.
  54. [54] 鄭耿豪,“利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜”,國立清華大學材料科學工程研究所碩士論文,2005 年。
Times Cited
  1. 鄭坤恩(2012)。鋁鉻鉭鈦鋯釕多元合金薄膜於銲錫接點擴散阻障性質之研究。中興大學材料科學與工程學系所學位論文。2012。1-68。