Title

合成銀硫化物- Ag2S 和Ag2Se量子點敏化太陽能電池的光學、光電壓特性研究

Translated Titles

Synthesis, optical and photovoltaic properties of silver chalcogenides-Ag2S and Ag2Se quantum dots as sensitizers for solar cells application

DOI

10.6845/NCHU.2011.00176

Authors

高貴生

Key Words

量子點 ; 太陽能電池 ; 連續的離子層吸收與反應沉積法 ; 硫化銀 ; 硒化銀 ; quantum dots ; solar cells ; successive ionic layer absorption and reaction deposition ; silver sulfide ; silver selenide

PublicationName

中興大學物理學系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

博士

Advisor

李明威

Content Language

英文

Chinese Abstract

我們介紹一種新有機染料光敏化劑,硫化銀量子點太陽能電池。藉由連續的離子層吸收與反應沉積法成長量子點(QDs)。組裝硫化銀量子點太陽能電池產生最佳功率轉換效率1.70%, 短路電流1.54 mA/cm2在10.8%太陽光照下。在光譜400-1000 nm的範圍間,波長530 nm且平均外部量子效率42%太陽能電池具有最大的外部量子效率(EQE) 50%。銀硫族化合物系統族中的硒化銀(Ag2Se)量子點所組裝的太陽能電池其外部量子效率光譜涵蓋所有太陽功率光譜350-2500 nm,具有平均EQE 80%, 在短波長區間中(350-800 nm)有56%是在所有太陽光譜之上。硫化銀和硒化銀的有效光伏範圍分別是鎘硫族化合物系中硫化鎘和硒化鎘的2-4倍及7-14倍相較下更為寬廣。硒化銀產生的光電流比N3染料高出4倍。最佳太陽能電池產生功率轉換效率達1.76% 和3.12% 分別在太陽照度99.4% 和9.7%. 我們也已証明使用硫化銀和硒化銀做為共敏化劑與聚硫化物做為氧化還原結合所做的太陽能電池,在一日照下我們得到最佳的效率是1.27%並以硫化銅做為輔助電極,在完全太陽光譜相同種類的電解質和平均EQE是比單層量子點高出68%。在這種雙層量子點結構中比單層量子點太陽能電池有更高的光電流,與N3染料相比較幾乎是高出5倍。這一結果顯示銀硫族化合物元素能被使用在太陽能電池使其為更高效率寬頻帶染敏化劑。

English Abstract

We present a new photosensitizer – Ag2S quantum dots (QDs) – for solar cells. The QDs were grown by the successive ionic layer adsorption and reaction deposition method. The assembled Ag2S-QD solar cells yield a best power conversion efficiency of 1.70% and a short-circuit current of 1.54 mA/cm2 under 10.8% sun. The solar cells have a maximal external quantum efficiency (EQE) of 50% at λ=530 nm and an average EQE of ~ 42% over the spectral range of 400–1000 nm. For the family of silver chalcogenide system-Ag2Se quantum dots (QDs), the external quantum efficiency (EQE) spectrum of the assembled cells covers the entire solar power spectrum of 350–2500 nm with an average EQE of ~ 80% in the short-wavelength region (350–800 nm) and 56% over entire solar spectrum. The effective photovoltaic range of Ag2S and Ag2Se were ~ 2-4 and 7–14 times, respectively broader than that of the cadmium calcogenide system—CdS and CdSe. The photocurrent that Ag2Se generates is four times higher than that of N3 dye. The best solar cell yields power conversion efficiencies of 1.76% and 3.12% under 99.4% and 9.7% sun, respectively. We also have demonstrated of Ag2S/Ag2Se co-sensitized solar cells with polysulfide redox couple. Our best efficiency at one sun is 1.27% featuring CuS counterelectrode, which is higher than single QDs under the same kind of electrolyte and an average EQE entire solar spectrum ~ 68%. A higher photocurrent than that of single QDs can be generated from this double-layered QDs is almost five times compared with N3 dye. The results show that silver chalcogenide element can be used as a highly efficient broadband sensitizer for solar cells.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
Reference
  1. Laboratory. [online] available
    連結:
  2. [3] Electricity Generating Authority of Thailand [online] available
    連結:
  3. [4] Y. Tian and T. Tatsuma, J. Am. Chem. Soc. 127 (2005) 7632.
    連結:
  4. [6] N. S. Lewis, Science 315 (2007) 798.
    連結:
  5. [7] Peter Würfel, “Limitations on Energy Conversion in Solar Cells” Physics of solar
    連結:
  6. cells From Principle to New Concepts, WILEY-VCH Verlag GmbH&Co. KGaA, 2005 ISBN 3-527-40428-7 pp 141.
    連結:
  7. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 127 (2005) 16835.
    連結:
  8. [9] “Solar Cell-Photovoltaic” [online] available
    連結:
  9. [10] “Thananun traffic Co.Ltd” [online] available
    連結:
  10. [12] “Praphansarn” [online] available
    連結:
  11. [13] “Dye-sensitized solar cell” [online] available
    連結:
  12. [15] “Nanotechnology-Quantum dot” [online] available
    連結:
  13. [16] S. Gorer, G. Hodes, J. Phys. Chem. 98 (1994) 5338.
    連結:
  14. G. Allan, Z. Hens, Chem. Mater. 19 (2007) 6101.
    連結:
  15. [18] R.D. Shaller, V.I. Klimov, Phys. Rev. Lett. 92 (2004) 186601.
    連結:
  16. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc. 115 (1993) 6382.
    連結:
  17. [21] L. W. Chong, H. T. Chien, and Y. L. Lee, J. Power Sources 195 (2010) 5109.
    連結:
  18. [22] C. H. Chang and Y. L. Lee, Appl. Phys. Lett. 91 (2007) 053503.
    連結:
  19. [23] Y. L. Lee and C. H. Chang, J. Power Sources 185 (2008) 584.
    連結:
  20. Langmuir 25 (2009) 7602.
    連結:
  21. Commun. 11 (2009) 1337.
    連結:
  22. Bisquert, Acc. Chem. Res. 42 (2009) 1848.
    連結:
  23. Abraham, E. H. Sargent, ACS Nano. 2 (2008) 833.
    連結:
  24. [35] G. Y. Lan, Z. Yang, Y. W. Lin, Z. H. Lin, H. Y. Liao, H. T. Chang, J. Mater.
    連結:
  25. Chem. 19 (2009) 2349.
    連結:
  26. 130 (2008) 1124.
    連結:
  27. [37] S. Q. Fan, B. Fang, J. H. Kim, J. J. Kim, J. S. Yu, J. Ko, Appl. Phys. Lett. 96 (2010)
    連結:
  28. [38] Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q.
    連結:
  29. Meng, Phys. Chem. Chem. Phys. 13 (2011) 4659.
    連結:
  30. Phys. Status Solidi (RRL) 2 (2008) 172.
    連結:
  31. Commun. 12 (2010) 1158.
    連結:
  32. [43] T. G. Schaaff, A. J. Rodinone, J. Phys. Chem. 107 (2003) 10416.
    連結:
  33. [44] A. Martí, G.L. Araújo, Sol. Energy. Mater. Sol. Cells. 43 (1996) 203.
    連結:
  34. [45] R. Vogel, P. Hoyer, H. Weller, J. Phys. Chem. 98 (1994) 3183.
    連結:
  35. [46] J. F. Reber, M. Rusek, J. Phys. Chem. 90 (1986) 824.
    連結:
  36. [47] R. Dalven, R. Gill, Phys. Rev. 159 (1967) 645.
    連結:
  37. [49] H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci., 27 (2004) 85.
    連結:
  38. (1998) 1528.
    連結:
  39. [51] A. Tubtimtae, M. W. Lee, G. J. Wang, J. Power Sources 196 (2011) 6603.
    連結:
  40. Are Small”.[online] available
    連結:
  41. available http://www-opto.e-technik.uni-ulm.de/lehre/cs/.
    連結:
  42. [54] U. Diebold "The surface science of titanium dioxide". Surface Science Reports 48
    連結:
  43. (5-8) (2003) 53–229. doi:10.1016/S0167-5729(02)00100-0.
    連結:
  44. [55] “Titanium dioxide” [online] available
    連結:
  45. [59] L. S. Ramsdell, The crystallography of acnthite, Ag2S. Amer. Mineralogist 28
    連結:
  46. [60] L. Yang, R. Xing, Q. Shen, K. Jiang, F. Ye, J. Wang, Q. Ren, J. Phys. Chem. B
    連結:
  47. 110 (2006) 10534.
    連結:
  48. [61] N. Belman, Y. Golan, A. Berman, Cryst. Growth Des. 5 (2005) 439.
    連結:
  49. [63] A. F. Wells, Structural Inorganic Chemistry 5th edition, Oxford Science
    連結:
  50. Publications (1984) ISBN 0-19-855370-6.
    連結:
  51. [65] A. K. Abass, Solar Energy Mater. 17 (1988) 375.
    連結:
  52. [66] D. Brqhweiler, R. Seifert, G. Calzaferri, J. Phys. Chem., B 103 (1999) 6397.
    連結:
  53. [67] “Silver sulfide” [online] available
    連結:
  54. [68] “Silver(I) selenide” [online] available
    連結:
  55. [70] A. Boettcher, G. Haase, H. Z. Treupel, Angew. Phys. 7 (1955) 487.
    連結:
  56. [72] F. Shimojo, H. Okazaki, J. Phys. Soc. Jpn. 62 (1993) 179.
    連結:
  57. [73] P. Z. Ralphs, Phys. Chem. 31B (1936) 157.
    連結:
  58. [74] M. C. S. Kumar, B. Pradeep, Semicond. Sci. Technol. 17 (2002) 261.
    連結:
  59. [75] P. K. Khanna, B. K. Das, Mater. Lett. 58 (2004) 1030.
    連結:
  60. 106 (1983) 175.
    連結:
  61. [77] D. Grientschnig, W. Sitte, J. Phys. Chem. Solids 52 (1991) 805.
    連結:
  62. [79] M. Ferhat, J. Nagao, Appl. Phys. Lett. 88 (2000) 813.
    連結:
  63. 374 (1994) 105.
    連結:
  64. [82] G. Hodes, J.Manassen, D. Cahen, J. Appl. Electrochem. 7 (1977) 181.
    連結:
  65. [83] P. Allongue, H. Cachet,M. Froment and R. Tenne, J. Electroanal. Chem. 269
    連結:
  66. (1989) 295.
    連結:
  67. [84] A. W. Adamson, A. P. Gast, Physical chemistry of surfaces; 6Ed, Wiley, 1997.
    連結:
  68. [85] B. E. Conway, R. E. White, J. O. Bockris, Modern Aspects of Electrochemistry, 16,
    連結:
  69. 496.
    連結:
  70. Microchim. Acta 160 (2008) 125.
    連結:
  71. [87] N. Murakami, M. Gratzel, Inorg. Chim. Acta 361 (2008) 572.
    連結:
  72. [88] G. Hodes, J. Manassen, D. Cahen, J. Electrochem. Soc. 127 (1980) 544 .
    連結:
  73. 259.
    連結:
  74. [90] Y. L. Lee, Y. S. Lo, Adv. Funct. Mater. 19 (2009) 604.
    連結:
  75. [91] “Optical air mass” [online] available
    連結:
  76. [92] “Sunlight” [online] available
    連結:
  77. Y. Matsumoto, K. Domen, J. Phys. Chem. B 107 (2003) 1798.
    連結:
  78. [94] G. Liu, W. Jaegermann, J. He, V. Sundström, L. Sun, J. Phys. Chem. B 106
    連結:
  79. (2002) 5814.
    連結:
  80. [96] “Refluxing” [online] available
    連結:
  81. [97] Peter Würfel, “Limitations on Energy Conversion in Solar Cells” Physics of solar
    連結:
  82. cells From Principle to New Concepts, WILEY-VCH Verlag GmbH&Co. KGaA,
    連結:
  83. [98] Peter Würfel, “Limitations on Energy Conversion in Solar Cells” Physics of solar
    連結:
  84. cells From Principle to New Concepts, WILEY-VCH Verlag GmbH&Co. KGaA,
    連結:
  85. [101] H. Piller, E. D. Palik, “Cadmium Selenide (CdSe)” Handbook of Optical Constant
    連結:
  86. [102] Editoral, Sol. Energy. Mater. Sol. Cells 92 (2008) 371.
    連結:
  87. [1] K. A. Tsokos, Physics for the IB Diploma Fifth edition, Cambridge University Press, Cambridge, 2008 ISBN 0521708206.
  88. [2] Perlin, John (2004). "The Silicon Solar Cell Turns 50". National Renewable Energy
  89. http://www.nrel.gov/docs/fy04osti/33947.pdf. Retrieved 5 October 2010.
  90. http://www2.egat.co.th/re/solarcell/solarcell.htm.
  91. [5] W. Shockley and H.J. Queisser, J. Appl. Phys. 32 (1961) 510.
  92. [8] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S.
  93. http://bangkok-guide.z-xxl.com/snack-knowledge/4169.html.
  94. http://thananun2008.tarad.com/.
  95. [11] “Porntawee OA Sales and Services” [online] available
  96. http://www.pornthaveeoa.com/index.php?mo=30&cid=131656.
  97. http://www.praphansarn.com/new/forum/forum_posts.asp?TID=12061&get=last.
  98. http://www.postech.ac.kr/chem/mras/eunju.htm
  99. [14] S.P.K. Lee, N.G. Park, Nature Materials, 8 (2009) 665.
  100. http://www.atom.rmutphysics.com/charud/scibook/nanotech/Page/Unit3-9.html.
  101. [17] I. Moreels, K. Lambert, D. De Muynck, F. Vanhaecke, D. Poelman, J. C. Martins,
  102. [19] M. C. Hanna and A. J. Nozik, J. Appl. Phys. 100 (2006) 074510.
  103. [20] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N.
  104. [24] Z. Yang, C. Y. Chen, C. W. Liu, H. T. Chang, Chem. Commun. 46 (2010) 5485.
  105. [25] Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Torimoto, S. Kuwabata, Chem. Lett.
  106. 36 (2007) 88.
  107. [26] O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, G. Hodes, J. Photochem.
  108. Photobiol. A 181 (2006) 306.
  109. [27] H. J. Lee, J. -H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I.
  110. Seok, M. Grätzel, M. K. Nazeeruddin, J. Phys. Chem. C 112 (2008) 11600.
  111. [28] H. J. Lee, P. Chen, S. J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin,
  112. P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel, M. K. Nazeeruddin,
  113. [29] S. Q. Fan, D. Kim, J. J. Kim, D. W. Jung, S. O. Kang, J. Ko, Electrochem.
  114. [30] Q. Shen, J. Kobayashi, L. J. Diguna, T. Toyoda, J. Appl. Phys. 103 (2008) 084304.
  115. [31] I. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda, J.
  116. [32] G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-
  117. [33] M. Abbas, B. Ali, S. I. Shah, P. Akhter, Key. Eng. Mat. 442 (2010) 404.
  118. [34] R. Plass, S. Pelet, J. Krueger, M. Grätzel, U. Bach J. Phys. Chem. B 106 (2002)
  119. 7578.
  120. [36] W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, L. M. Peng, J. Am. Chem. Soc.
  121. 063501.
  122. [39] J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, Md. K.
  123. Nazeeruddin, M. Grätzel, Nano Lett. 10 (2010) 2609.
  124. [40] A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Lux-Steiner,
  125. [41] S. Kitova, J. Eneva, A. Panov, H. Haefke, J. Imaging Sci. Technol. 38 (1994) 484.
  126. [42] A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, G. J. Wang, Electrochem.
  127. [48] Karakaya, W. T. Thompson, ASM international, Materials Park, OH. 1 (1990)
  128. pp. 88.
  129. [50] V. Buschmann, G. V. Tendeloo, Ph. Monnoyer and J. B. Nagy, Langmuir 14
  130. [52] University of Toronto “The Ratio of Surface Area to Volume Explains Why Cells
  131. http://www.mie.utoronto.ca/labs/lcdlab/biopic/fig/4.2.jpg.
  132. [53] “Compound semiconductors: Physics, technology and device concepts” [online]
  133. http://en.wikipedia.org/wiki/Titanium_dioxide.
  134. [56] M. Gräzel, Nature, 414 (2001) 338.
  135. [57] “Silver sulfide” [online] available
  136. http://commons.wikimedia.org/wiki/File:Silver-sulfide-unit-cell-3D-balls.png.
  137. [58] N. N. Greenwood, A. Earnshaw, Chemistry of the Elements (2nd ed.), Oxford:
  138. Butterworth-Heinemann 1997 ISBN 0080379419.
  139. (1943) 401.
  140. [62] H. Dlala, M. Almouk, S. Belgacem, P. Girard, D. Barjon, Eur. Phys. J. A. 2 (1998)
  141. 13.
  142. [64] G. Hodes, J. Manasen, D. Cahen, Nature, 261 (1976) 403.
  143. http://en.wikipedia.org/wiki/Silver_sulfide.
  144. http://en.wikipedia.org/wiki/Silver(I)_selenide.
  145. [69] G. A. Wiegers, Am. Mineral. 56 (1971) 1882.
  146. [71] B. Gates, B. Mayers, Y. Wu, Y. Sun, B. Cattle, P. Yang, Y. Xia, Adv. Funct. Mater.
  147. 12 (2002) 679.
  148. [76] A. G. Abdullayev, R. B. Shafizade, E. S. Krupnikov, K. V. Kiriluk Thin Solid Films,
  149. [78] R. Daleven, R. Gill, J. Appl. Phys. 38 (1967) 753.
  150. [80] F. Kirchhoff, J. M. Holender, M. J. Gillan Physical Review B 54 (1996) 190.
  151. [81] K. L. Lewis, A.M. Pitt, T. Wyatt-Davies, J.R. Milward, Mater. Res. Soc. Symp. Proc.
  152. [86] P. Wachter, C. Schreiner, M. Zistler, D. Gerhard, P. Wasserscheid, H. J. Gores,
  153. [89] Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li, H. T. Chang, Adv. Energy Mater. 1 (2011)
  154. http://www.tippens.info/TKB/Presentation.php?view=show&pageid=145.
  155. http://en.wikipedia.org/wiki/Sunlight.
  156. [93] W.-J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai,
  157. [95] Y. Xu, M. A. A. Schoonen, Am. Mineral. 85 (2000) 543.
  158. http://www.chem.wisc.edu/areas/organic/orglab/tech/reflux.htm.
  159. 2005 ISBN 3-527-40428-7 pp. 140.
  160. 2005 ISBN 3-527-40428-7 pp. 151.
  161. [99] M. Grätzel, Prog. Photovolt. Res. Appl. 8 (2000) 171.
  162. [100] M. Shalom, S. Dor, S. Rühle, L. Grinis, A. Zaban, J. Phys. Chem. C 113 (2009)
  163. 3895.
  164. of Solids II, ACADEMIC PRESS, INC, 1991 ISBN0-12-544422-2 pp. 564.
  165. [103] H. J. Lee, J. Bang, J. Park, S. Kim, S. M. Park, Chem. Mater. 22 (2010) 5636.
  166. [104] Nalt. Bur. Stand. (U.S.), Circ. 539, 10 (1960) 51.
Times Cited
  1. 張恩竣(2013)。CuS量子點的合成及其在半導體敏化太陽能電池之應用。中興大學物理學系所學位論文。2013。1-61。