Translated Titles

Micro-Raman spectroscopy and Transmission Electron Microscopy investigation of YBCO thin films deposited by RF-magnetron sputtering





Key Words

釔鋇銅氧 ; 射頻磁控濺鍍 ; 拉曼光譜 ; 3.5 場發射穿透式電子顯微鏡 ; YBa2C3O7-δ ; RF magnetron Sputtering ; Raman Spectrometer ; Field Emission Transmission Electron Microscope



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本論文中,我們利用射頻磁控濺鍍系統沉積釔鋇銅氧薄膜於(100)鈦酸鍶基板上,藉由X光繞射分析儀(X-ray Diffract meter,XRD)、顯微拉曼光譜儀(Microscopes Raman Spectrometer)和場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscope,TEM)等儀器,分析釔不同基板溫度的鋇銅氧薄膜晶格結構。 我們發現隨著基板溫度的改變,其超導臨界溫度(superconducting critical temperature,Tc)有明顯地差異。透過拉曼分析可發現低基板溫度的薄膜中晶格結構含有顯著地a軸取向。從微觀結構觀察到a軸取向,且晶格缺陷嚴重。而a軸取向範圍小且凌亂。隨著基板溫度的增加,由拉曼分析觀察到薄膜中的a軸取向明顯變弱。從微觀結構中,則發現a軸取向為大範圍生長。最後在基板溫度為730℃的薄膜中,已無a軸取向。 透過拉曼光譜大範圍分析,可清楚且容易地觀察釔鋇銅氧薄膜的晶格軸向。在製作超導元件時,可選擇適合的區域製作圖形,以增加超導元件之成功率。

English Abstract

In this work, YBCO films were deposited by RF magnetron sputtering on (100) strontium titanate substrate. X-ray diffactometry, Raman spectroscopy and field emission transmission electron microscopy were used to investigate the lattice structure of the YBCO films. The superconducting critical temperature varied significantly with the temperature of the substrate. Raman spectroscopy revealed that the lattice structure at low substrate temperature was visibly orientated a-axis. The a-axis orientation and lattice defects in the microscopic structure were observed. And the area of the a-axis orientation was small and disordered. Raman spectroscopy revealed that the a-axis orientation became weak as the substrate temperature increased. And the area that exhibited that orientation increased in the microscopic structure. Finally, no a-axis orientation was observed at a substrate temperature of 730 ℃. The orientations of YBCO films were clearly and easily observed by Raman spectroscopy. A suitable area can be to patterned to increase the success rate of Josephson junctions and Superconducting Quantum Interference Devices.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
  1. 1. Onnes, H.K. Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures. in KNAW, Proceedings. 1911.
  2. 2. Meissner, W. and R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfahigkeit. Naturwissenschaften, 1933. 21(44): p. 787-788.
  3. 3. Tinkham, M., Introduction to superconductivity2012: Courier Dover Publications.
  4. 4. JOSEPHSON, B.D., The discovery of tunnelling supercurrents. Physics: 1971-1980, 1992. 1: p. 157.
  5. 5. Bednorz, J.G. and K.A. Muller, Possible highT c superconductivity in the Ba− La− Cu− O system. Zeitschrift fur Physik B Condensed Matter, 1986. 64(2): p. 189-193.
  6. 6. Wu, M.K., et al., Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters, 1987. 58(9): p. 908-910.
  7. 7. Kamihara, Y., et al., Iron-based layered superconductor: LaOFeP. Journal of the American Chemical Society, 2006. 128(31): p. 10012-10013.
  8. 8. Matsuishi, S., et al., Superconductivity induced by Co-doping in quaternary fluoroarsenide CaFeAsF. Journal of the American Chemical Society, 2008. 130(44): p. 14428-14429.
  9. 9. Swarup, R., A. Gupta, and M. Bansal, Effect of sample density on magnetic penetration depth in YBaCuO ceramic superconductors. Journal of superconductivity, 1995. 8(3): p. 361-364.
  10. 10. Takayama-Muromachi, E., et al., Thermogravimetric and High-Temperature X-Ray Studies on the Orthorhombic-to-Tetragonal Transition of YBa2Cu3Oy. Japanese journal of applied physics, 1987. 26: p. L665-L667.
  11. 12. Venkataraman, K., R. Baurceanu, and V.A. Maroni, Characterization of MBa< sub> 2 Cu< sub> 3 O< sub> 7- Thin Films by Raman Microspectroscopy. Applied spectroscopy, 2005. 59(5): p. 639-649.
  12. 13. Zeng, L., et al., Surface texture and interior residual stress variation induced by thickness of YBa 2 Cu 3 O 7-δ thin films. Journal of Applied Physics, 2012. 112(5): p. 053903-053903-5.
  13. 14. Dieckmann, N., et al., Epitaxial quality of< i> c-axis and< i> a-axis oriented YBa< sub> 2 Cu< sub> 3 O< sub> 7 films Characterization by Raman spectroscopy. Physica C: Superconductivity, 1995. 245(3): p. 212-218.
  14. 15. Gonzalez, J., et al., Biaxial texture analysis of YBa_ {2} Cu_ {3} O_ {7}-coated conductors by micro-Raman spectroscopy. Physical Review B, 2004. 70(9): p. 094525.
  15. 16. Huong, P.V., et al., Structure and orientation of a superconducting Y-Ba-Cu-O thin film on zirconia substrate. A study by micro-Raman spectroscopy. Solid state communications, 1989. 72(2): p. 191-194.
  16. 17. Low, B., et al., Substrate temperature dependence of the texture quality in YBCO thin films fabricated by on-axis pulsed-laser ablation. Superconductor Science and Technology, 1997. 10(1): p. 41.
  17. 18. Tietz, L.A., et al., Crystallography of YBa2Cu3O6+ x thin film-substrate interfaces. Journal of Materials Research, 1989. 4(05): p. 1072-1081.
  18. 21. Fifield, F.W. and D. Kealey, Principles and practice of analytical chemistry1995: Blackie academic & professional.
  19. 22. Chen, C.J., Introduction to scanning tunneling microscopy. Vol. 227. 1993: Oxford University Press New York.
  20. 23. Long, D.A. and D. Long, Raman spectroscopy1977: McGraw-Hill New York.
  21. 11. Takayama-Muromachi, E., et al., High Tc superconductor YBa2Cu3Oy-Oxygen content vs Tc relation. Japanese journal of applied physics, 1987. 26(7): p. L1156-L1158.
  22. 19. Khare, N., Handbook of High-Temperature Superconductor. Vol. 7. 2003: CRC Press.
  23. 20. 林麗娟, X 光繞射原理及其應用. 工業材料雜誌, 1994. 86: p. 100-109.
  24. 24. 陳力俊, 材料電子顯微鏡學1994: 行政院國家科學委員會精密儀器發展中心發行.