Title

氧含量對鈷鉑及鐵鉑薄膜之影響

Translated Titles

Effect of oxygen contents on CoPt and FePt thin films

Authors

吳宜靜

Key Words

鈷鉑 ; 鐵鉑 ; CoPt ; FePt

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

林克偉

Content Language

繁體中文

Chinese Abstract

本研究首先以超高真空磁控濺鍍系統製備CoPt(10 nm)及FePt(10 nm),接著以雙離子束濺鍍系統,分別在CoPt及FePt上層,鍍上不同氧含量之TiOx及SiOx (0~41%O2/Ar),接著在超高真空磁控濺鍍之腔體內,對試片進行退火處理。接著進行一系列之分析,探討退火溫度及頂層氧化物對於CoPt及FePt在磁性質及微結構方面之影響。 初鍍膜之SiO2/CoPt/TiOx,矯頑磁力約Hc⊥~205到242 Oe;Hc//~35到54 Oe,磁性質主要來源為軟磁性的鈷。經過600oC、20分鐘退火後,平行矯頑磁力約Hc//~191到407 Oe。由TEM分析顯示,退火後轉變為序化fct相,但其結構為連續膜,相對應之晶粒大小約5~29 nm。此表示退火後Ti和O沒有擴散進入CoPt薄膜而將晶粒分散。 初鍍膜之SiO2/CoPt/SiOx,矯頑磁力約Hc⊥~106到277 Oe;Hc//~39到67 Oe。經過600oC、20分鐘退火後,平行矯頑磁力約Hc//~127到348 Oe。 在SiO2/FePt/TiOx(30%O2/Ar)方面,退火溫度為400oC時,其結構轉變為序化之fct相。由TEM分析顯示,退火溫度為650oC時,晶粒明顯變小,這是因為Ti和O擴散進入FePt薄膜將晶粒分散所造成的;其相對應之序化度為0.74。矯頑磁力為Hc⊥~11.4kOe,Hc// ~11.7kOe。 在SiO2/FePt/TiOx(0~41%O2/Ar)方面,經550oC、10分鐘後,結構皆轉變為序化之fct相,序化度約0.7。氧含量為21%時,具有最大垂直矯頑磁力(Hc⊥~14.8kOe)。隨著氧含量之改變,晶格常數沒有太大之變化,大致上為定值(a~3.80&Aring; , c~3.70 &Aring;),此表示隨著氧含量之改變,Ti和O並未擴散至FePt之晶格內。 最後,將SiO2基板換成MgO(001)基板,鍍製FePt/TiOx及FePt/SiOx (30%O2/Ar)。經由550oC、10分鐘退火後,磁性質也有明顯的提升。退火後,MgO(001)/FePt/TiOx之垂直及平行矯頑磁力分別為8.51kOe及0.81 kOe;MgO(001)/FePt/SiOx 之垂直及平行矯頑磁力分別為6.71kOe及2.84 kOe。序化度皆為0.7左右。值得注意的是MgO(001)/FePt/ TiOx及MgO(001)/FePt/ SiOx在退火後,δM<0,表示晶粒間作用力為靜磁作用力,此表示退火後晶粒可能有被分散。

English Abstract

In our research, we have shown that the structure and magnetic properties of CoPt and FePt thin film. First,we used ultrahigh vacuum (UHV) magnetron sputtering system to prepare for CoPt and FePt thin films. Second, we capped CoPt and FePt with TiOx and SiOx layers by use of dual ion-beam deposition technique with the mixture of O2/Ar gas varied from 0% to 41%O2/Ar. Third, samples were annealed in the UHV chamber under different heat treatment condition. Finally, we did a series of analysis to investigate the effect of annealing temperature and top oxide on microstructure and magnetism in CoPt and FePt thin films. The coercivity of as-deposited SiO2/CoPt/TiOx is about Hc⊥~205 to 242 Oe and Hc//~35 to 54 Oe. The magnetic property mainly comes from soft magnetic phase Co. After annealing at 600oC for 20 mins, the in-plane coercivity is about Hc//~191 to 407 Oe. And TEM results show phase transformation to orderded fct phase. However, the structures show continuous thin films, which means that Ti and O do not diffuse into CoPt thin film to separate grains during post-annealing. The coercivity of as-deposited SiO2/CoPt/SiOx is about Hc⊥~106 to 277 Oe ; Hc//~39 to 67 Oe. After annealing at 600oC for 20 mins, the in-plane coercivity is about Hc//~127 to 348 Oe. SiO2/FePt/TiOx (30%O2/Ar) shows that phase transformation to ordered fct phase at 400oC. From TEM analysis, grain sizes become smaller because of grains separation by Ti and O atoms at 650oC; ordering parameter and coercivity are 0.74 and Hc⊥=11.4 kOe,Hc// =11.7 kOe,respectively. In SiO2/FePt/TiOx(0~41%O2/Ar),phase transformation to ordered fct phase after annealing at 550oC for 10 mins. 21%O2/Ar shows largest perpendicular coercivity(Hc⊥ ~14.8 kOe). The lattice constant(a~3.80&Aring; , c~3.70 &Aring;) after annealing does not change with %O2/Ar , which means that TiOx does not diffuse into FePt lattice. Lastly,we use MgO(001) substrate to replace SiO2 substrate and preparing FePt/TiOx and FePt/SiOx (30%O2/Ar). After annealing,MgO(001)/FePt/TiOx shows Hc⊥~8.51kOe and Hc//~0.81 kOe and MgO(001)/FePt/SiOx shows Hc⊥~6.71kOe and Hc//~2.84 kOe. The ordering parameter is approximately 0.7. From δM analysis, after post-annealing, the curve of MgO(001)/FePt/TiOx and MgO(001)/FePt/SiOx show negative peak, indicating that the predominant interparticle interactions are dipolar. These indicate that grains may be separated after annealing.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [3] F. T. Yuan, D. H. Wei, H. W. Chang, S. K. Chen, H. W. Huang, S. N. Hsiao, A.C.Sun, H. Y. Lee, and Y. D. Yao, J. Appl. Phys. 103, 07E115 (2008).
    連結:
  2. [9] C. H. Lai, C. H. Yang, and C. C. Chiang, Appl. Phys. Lett. 83, 4550 (2003)
    連結:
  3. [18] A. C. Sun, P. C. Kuo, S. C. Chen, C. Y. ChouH. L. Huang and J. H. Hsu, J. Appl. Phys. 95, 7264(2004).
    連結:
  4. [19] 國立台灣大學材料科學與工程所博士論文,低序化溫度LI0 FePt 合金薄膜的製備及其應用於垂直磁記錄媒體之研究,孫安正,民國94 年。
    連結:
  5. [21] J. J. Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology : principles, deposition, film modification, and synthesis", Noves Publication, 1989.
    連結:
  6. [24] David B. Williams and C. Barry Carter, “Transmission Electron Microscopy", Plenum Press, 1996.
    連結:
  7. [25] David Jiles, “Magnetism and Magnetic Materials", Chapman & Hall, 1991.
    連結:
  8. [31] D. J. Sellmyer, M. Yan, Y. Xu, and R. Skomski, IEEE Trans. Magn. 41, 560 (2005).
    連結:
  9. [37] Y. M. Chiang, D. P. Birnie III, and W. D. Kingery, Physics Ceramics (Wiley, New York, 1997), pp. 357–358.
    連結:
  10. [43] Y.K. Takahashi, K. Hono, T. Shima, K. Takanashi, J. Magn. Magn. Mater. 267,248 (2003).
    連結:
  11. [44] B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials.Second Edition.
    連結:
  12. [47] Chen Chen, Osamu Kitakami, Satoshi Okamoto, and Yutaka Shimada, Appl. Phys. Lett. 76, 3218(2000).
    連結:
  13. [51] Y.H. Fang, P.C. Kuo, A.C. Sun, S.L. Hsu, S.C. Chen, Thin Solid Films 517,5181 (2009).
    連結:
  14. [52] 國立中興大學材料科學與工程所碩士論文,鐵鉑/氧化矽薄膜之微結構及磁性質研究,邱宜倫,民國98年。
    連結:
  15. 參考文獻
  16. [1] M. Yu. Liu, and D. J. Sellmyer, J. Appl. Phys. 87, 6965 (2000).
  17. [2] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Eest, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Doerner, IEEE Trans. Magn. 36, 10 (2000).
  18. [4] D. T. Margulies, M. E. Schabes, N. Supper. H. Do, A. Berger, A. Moser, P. M. Rice, P. Aenett, M. Madison, B. Lengsfield, H. Rosen, and Eric E. Fullerton, Appl. Phys. Lett. 85, 6200 (2004).
  19. [5] J. S. Chen, Yingfan Xu, and J. P. Wang, J. Appl. Phys., 93, 16615 (2003).
  20. [6] T. Maeda, T. Kai, A. Kikitsu, T. Nagase, and J.-I. Akiyama, Appl. Phys. Lett. 80,2147 (2002)
  21. [7] Q. Yan, T. Kim, A. Purkayastha, P. G. Ganesan, M. Shima, and G. Ramanath, Adv. Mater. _Weinheim, Ger._ 17, 2233 (2005)
  22. [8] C. H. Lai, Y. C. Wu, and C. C. Chiang, J. Appl. Phys. 97, 10H305 (2005).
  23. [10] Yasushi Endo, Nobuaki Kikuchi, Osamu Kitakami, and Yutaka Shimada, J. Appl. Phys., 89, 7065 (2001).
  24. [11] C. Denis Mee and Eric D. Daniel, “Magnetic Recording Technology",second edition, 1995.
  25. [12] M. Yu, Y. Liu, A. Moaer, D. Weller, and D. J. Sellmyer, Appl. Phys. Lett. 75, 3992 (1999).
  26. [13] 金重勳主編,“磁性技術手冊",中華民國磁性技術協會, 2002.
  27. [14] T. J. Klemmer, C. Liu, N. Shukla, X. W. Wu, D. Weller, M. Tanase, D. E. Laughlin, and W. A. Soffa, J. Magn. Magn. Master. 266,79(2003).
  28. [15] H. Okamoto, “Binary Alloy Phase Diagrams",Vol 2, ASM International, 2 nd edition, 1992.
  29. [16] Magnetic Nanostructures, edited by Hari Singh Nalwa, Stevenson Ranch, Calif. “American Scientific Publishers”(2002).
  30. [17] Yun-Chung Wu, Liang-Wei Wang, and Chih-Huang Lai, Appl. Phys. Lett. 91,072502 (2007).
  31. [20] 雙離子束濺鍍系統操作手冊
  32. [22] B. D. Cullity and S. R. Stock, “Element of X-ray Diffraction", Prentice-Hall, Inc.,2001.
  33. [23] 汪建民主編, “材料分析",中國材料科學學會,1998.
  34. [26] P. E. Kelly, K. O’Grady, P. I. Mayo, and R. W. Chantrell, IEEE Trans. Magn. 25,3881 (1989).
  35. [27] T. Seki, T. Shima, K. Takanashi and E. Matsubara, Appl. Phys. Lett. 82, 2461 (2004).
  36. [28] K. H. J. Buschow, “Concise Encyclopedia of magnetic and Superconducting materials. "
  37. [29] 汪島軍、馬仁宏、陳亙佑、蔡斯凱、林建智,“原子力顯微鏡專利地圖及分析"。
  38. [30] Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, and K. Hono, J. Appl. Phys.95, 5 (2004).
  39. [32] J.-S. Kim, Y.-M. Koo, and N. Shin, J. Appl. Phys. 100, 093909 (2006).
  40. [33] T. J. Klemmera, C. Liua, N. Shuklaa, X. W. Wua, D. Wellera, M. Tanaseb, D.E. Laughlinb, and W. A. Soffac, J. Magn. Magn. Mater. 266, 79 (2003).
  41. [34] J.-Y. Guo, C.-Y. Liu, H. Ouyang, K.-W. Lin, C.-J. Tsai, J. van Lierop, N. N. Phuoc, and T. Suzuki, Phys. Stat. Sol. (c) 4, 4512 (2007).
  42. [35] A.C.Sun, Jen-HwaHsu, P.C.Kuo, and H.L.Huang, J. Magn. Magn. Mater. 320, 3071 (2008).
  43. [36] T. Katayama, T. Sugimoto, Y. Suzuki, M. Hashimoto, P. de Haan, and J.C. Lodder, J. Magn. Magn. Mater. 104, 1002 (1992).
  44. [38] J.-S. Kim, Y.-M. Koo, and B.-J. Lee, J. Appl. Phys. 99, 053906 (2006).
  45. [39] Y.H. Fang , P.C. Kuo , A.C. Sun , S.L. Hsu , S.C. Chen ,Thin Solid Film 517,5181(2009).
  46. [40] Chih-Ming Kuo, P.C. Kuo, Wei-Chih Hsu, Chao-Te Li, An-Cheng Sun, J. Magn. Magn. Mater. 209,100 (2000).
  47. [41] C.M. Kuo, P.C. Kuo, H.C. Wu, Y.D. Yao, C.H. Lin, J. Appl.Phys. 85,4886 (1999).
  48. [42] Y. F. Ding, J. S. Chen, B. C. Lim, J. F. Hu, B. Liu, and G. Ju, Appl. Phys. Lett. 93, 032506(2008).
  49. [45] T. Katayama,T.Sugimoto,Y. Suzuki, M. Hashimoto, P. de Haan and J.C. Lodder, J. Magn. Magn. Mater.104,1002(1992).
  50. [46] Ko-Wei Lin, Yi-Lun Chiu, An-Cheng Sun, Jen-Hwa Hsu, Johan van Lierop, and Takao Suzuki, Jpn. J. Appl. Phys. 48, 073002 (2009).
  51. [48] O. Kitakami, Y. Shimada, K. Oikawa, H. Daimon, K. Fukamichi, Appl. Phys. Lett. 78, 1104(2001).
  52. [49] W.M. Liao, S.K. Chen, F.T. Yuan, C.W. Hsu, S.N. Hsiao, W.C. Chang, J. Magn. Magn. Mater. 304,e255 (2006).
  53. [50] Y. H. Fang, P. C. Kuo, P. L. Lin, C. T. Kuo, G. P. Lin,and S. C. Chen, J. Appl.Phys. 103,07F514 (2008).
  54. [53] Lei Zhang, Rajendra Persaud, and Theodore E. Madey, PHYSICAL REVIEW B, Vol 56, No.16 (1997).
  55. [54] O. Kitakami and Y. Shimada, K. Oikawa, H. Daimon, K. Fukamichi,APL Vol 78, No. 8 (2001)
Times Cited
  1. 陳瑩真(2011)。雙離子束濺鍍對鐵鉑/氧化鉭奈米雙層薄膜之結構及磁性質研究。中興大學材料科學與工程學系所學位論文。2011。1-107。
  2. 李龍傑(2012)。第三元素添加對L11 CoPt薄膜之磁性質及微結構研究。元智大學化學工程與材料科學學系學位論文。2012。1-84。