Title

機率式土壤液化危害度評估之應用-以臺中市沙鹿區及梧棲區為例

Translated Titles

Applications of Probabilistic Liquefaction Hazard Analysis–Shalu Dist.And Wuqi Dist., Taichung City

Authors

唐裕凱

Key Words

土壤液化 ; 土壤液化潛勢圖 ; 危害度曲線 ; 機率式液化危害度分析 ; soil liquefaction ; liquefaction potential ; hazard curve ; probabilistic liquefaction hazard analysis

PublicationName

中興大學土木工程學系所學位論文

Volume or Term/Year and Month of Publication

2021年

Academic Degree Category

碩士

Advisor

鄒瑞卿

Content Language

繁體中文

Chinese Abstract

摘要 民國88年集集大地震發生,伴隨而來的土壤液化造成了霧峰與員林等中部鄉鎮嚴重的災情,讓土壤液化的議題成為人們關注的重點。民國105年美濃地震同樣造成了南部地區鐵、公路及自來水、電力等民生設施的重大損壞,更造成永康某幢大樓倒塌造成重大的人員財物損失。土壤液化與災害對社會大眾所造成的恐慌,促成了政府單位加速進行土壤液化潛勢區的公告作業以及進行更詳細的土壤液化評估等相關計畫。土壤液化的評估方式分為定值式及機率式兩種,目前工程界常用之土壤液化評估方法為定值式評估法,依據耐震設計規範PGA及國家地震中心所提供建議之地震規模,使用簡易土壤液化評估法,並搭配Iwasaki所提出以深度加權來評估鑽孔的液化潛能指數PL。但是,定值式土壤液化評估採用一組具代表性的地震規模及地震力作為分析之地震力參數,無法將屬於自然發生的地震不確定性納入評估中,所建構出的土壤液化潛勢圖有可能被高估或低估。因此本研究利用機率式液化危害度分析(PLHA)程式模組(HAZ45PL Module),以統計與機率的方法考量地震之不確定性,建立土壤液化潛勢危害度曲線,並繪製475年再現週期之土壤液化潛勢圖與定值式成果比較,機率式分析成果可提供災害防治與擬定補強計畫之參考。 無論是定值式或機率式土壤液化分析在計算不同地層深度之SPT -N值時,須考慮到鑽桿長度不同可能影響到液化潛勢分析的結果,因此本研究考量鑽桿長度造成之能量損失並將之納入考量中。經比較後可得知鑽桿未修正之液化潛勢程度較修正過的液化潛勢低,未修正鑽桿長度在較短時造成之能量損失,將會高估淺層土壤之SPT -N值,導致計算之液化潛能指數過低之情形。 關鍵字:土壤液化、土壤液化潛勢圖、危害度曲線、機率式液化危害度分析

English Abstract

Abstract Jiji, a local town in Taiwan, experienced an impressive earthquake in 1999. The post-earthquake soil liquefaction was found in a number of local areas, and caused serious damages for local towns, including Wufeng and Yuanlin, in middle part of Taiwan. As a result, soil liquefaction became a concern for local residents in Taiwan. Similarly, the earthquake occurred in 2016 mainly in Meinong , a district in Kaohsiung, Taiwan, caused serious damages for railway systems, road networks and utilities infrastructures in southern area of Taiwan, and a condominium-typed building in Yongkang, a district in Tainan, Taiwan, collapsed during the earthquake, and had caused serious deaths, injuries, damages and losses. Consequently, soil liquefaction became a public concern, which prompted Taiwan local government authorities to take a number of measures, including release of announcements of potential liquefaction areas and implementations of detailed evaluation plans for soil liquefaction. As of the date of this abstract, there are two types of liquefaction evaluations: deterministic and probabilistic. The simplified liquefaction evaluation was adopted by this study after taking the Seismic Design Specifications published by Construction and Planning Agency in Taiwan, Peak ground acceleration (PGA) and the seismic-magnitude recommendations from National Center for Research on Earthquake Engineering (NCREE) in Taiwan into consideration. In addition, Iwasaki’s depth-influence method was use to evaluate the liquefaction potential index PL for the drilled hole. Currently, the deterministic method is widely used by engineers to evaluate liquefaction. But the deterministic method uses representative data of seismic magnitude and seismic forces as the controlling scenario to analyze liquefaction, and fails to take uncertainties of natural earthquakes, seismic magnitudes and other factors into consideration. As a result, the liquefaction potential maps derived from deterministic method may overestimate or underestimate the true liquefaction potentials. Therefore, this study uses probabilistic liquefaction hazard approach (PLHA) and HAZ45PL Module to explore seismic uncertainties, to establish a liquefaction potential hazard curve, and to plot a liquefaction potential map for return period 475 years, in order to compare with the results derived from deterministic method. It is believed the findings obtained from the probabilistic approaches may be valuable inputs for planning disaster prevention and improvements. It is necessary to consider the impacts of different length of drill on the results of liquefaction potential analysis when probabilistic or deterministic method is used to determine SPT -N of different underground depths. Therefore, this study took the energy loss caused by length of the drill into consideration. The comparison showed the liquefaction potential obtained from using an uncorrected drill is smaller than the one obtained from using a corrected drill. Therefore, when the energy loss caused by the shorter drill was not corrected, it might overestimate the SPT -N of the upper soils, and the calculated liquefaction potential index might be smaller than the true one. Keywords: soil liquefaction; liquefaction potential; hazard curve; probabilistic liquefaction hazard analysis

Topic Category 工學院 > 土木工程學系所
工程學 > 土木與建築工程
Reference
  1. 參考文獻
  2. 1、 中央大學地質所斷層線:(台灣地理全覽圖)上河文化。
  3. 2、 內政部營建署,(2001),建築技術規範,台內營字第9085629號函。
  4. 3、 內政部營建署「建築物耐震設計規範及解說第十一章」,(2011) 。
  5. 4、 內政部營建署建築物耐震設計規範及解說。
  6. 5、 台中市政府土壤液化查詢系統,網址:https://reurl.cc/Q3zVVp。
  7. 6、 台灣地質圖(大甲幅),經濟部中央地質調查所,83年12月。
  8. 7、 台灣地質圖(台中幅),經濟部中央地質調查所,89年6月。
  9. 8、 石再添、鄧國雄、楊三貴,(1984) ,大肚臺地的活斷層與地形面,中國地理學會會刊,第12期,9-11。
  10. 9、 李錫堤、馬國鳳、秦葆珩,(1999) ,美濃水庫設計地震評估研究,台灣省南區水資源局建教合作計畫成果報告,320 。
  11. 10、 沙鹿鎮志,網址:https://reurl.cc/j5x7am。
  12. 11、 辛在勤,(1998) ,台灣地區地震預警之初探訪,(投稿氣象學報) 。
  13. 12、 周士博,(2001) ,人工港區土壤液化潛能之研究,國立海洋大學河海工程學系碩士論文。
  14. 13、 林柏伸,(2002) , 台灣東北部地區隱沒帶地震強地動衰減式之研究,國立中央大學地球物理研究所碩士論文,共135 頁。
  15. 14、 茅聲燾,(1978) ,地震之工程危害度研究及其應用,中國土木水利學刊,35-40 。
  16. 15、 倪顯德、邱宏智,(1991) ,台灣地區強地動最大加速度值衰減之統計模型探討,第三屆台灣地區地球物理研討會論文集,95-105。
  17. 16、 從ArcGIS官網中,可以獲得內插法重要訊息(https://desktop.arcgis.com/en/)。
  18. 17、 梧棲古文書史料專輯,梧棲鎮公所,89年7月。
  19. 18、 梧棲鎮志,網址:https://reurl.cc/q8ydoE。
  20. 19、 郭俊翔、溫國樑、謝宏灝、林哲民,(2011) ,近地表剪力波速性質之研究,國家地震工程研究中心。
  21. 20、 陳子鍠,(1991) ,台灣地區最大加速度衰減之研究,國立中央大學地球物理研究所碩士論文。
  22. 21、 陳正興、陳家漢,地震引致的土壤液化與側潰現象,科學發展2014年6月,498期。
  23. 22、 陳怡秀,(2007) ,台灣西部平原土壤液化潛勢分析,萬能科技大學工程科技研究所碩士論文,指導教授:余貴坤、簡顯光。
  24. 23、 黃正耀,(1995) ,台灣地區強地動特性及地震危害度參數之評估,國立中央大學地球物理研究所碩士論文。
  25. 24、 黃俊鴻、楊志文,(2003) ,以集集地震案例探討現有 SPT-N 液化評估方法之適用性,地工技術,(98) , 79-90。
  26. 25、 黃俊鴻、楊志文、陳正興,(2005 ) ,本土液化評估方法之建議-雙曲線液化強度曲線,地工技術103期。
  27. 26、 趙曉玲,(2001) ,利用921地震序列之強地動資料對台灣強地動衰減模式與反應譜速估之研究,國立中央大學地球物理研究所碩士文,128 。
  28. 27、 劉坤松,(1999) ,台灣地區強震地動衰減模式之研究 (Doctoral dissertation,國立中央大學博士論文, 共 239 頁) 。
  29. 28、 歐麗婷,(2003) ,土壤液化機率之研究-以彰化員林地區為例,長榮大學土地管理與開發學系碩士論文,指導教授: 紀雲曜。
  30. 29、 鄭錦桐,(2002) ,台灣地區地震危害度的不確定性分析與參數拆解,國立中央大學地球物理所博士論文,指導教授:蔡義本、李錫堤。
  31. 30、 鄭錦桐、江憲宗、林柏伸、李錫堤,(2010) ,地震危害度分析技術之發展與應用,中興工程40週年紀念論文集, 231-249。
  32. 31、 鄭錦桐、林柏伸、江憲宗、李錫堤,(2011) ,台灣的地震危害度分析,2011 海峽兩岸地質災害研討會。
  33. 32、 鄭錦桐、林柏伸、謝寶珊、李錫堤,(2010) ,新一代強地動衰減式對工址地震危害度分析之影響,中興工程,(109),31-40。
  34. 33、 鄭錦桐等人,(2017) ,活動斷層版本與震源特徵。
  35. 34、 賴聖耀、李豐博、蘇吉立、陳志芳,(2002) ,港灣地區地震監測與土壤液化潛能評估之研究,交通部運輸研究所。
  36. 35、 薛仲宏,(2005) ,類神經網路與一般克利金法在空間內插之比較,中華大學土木工程學系碩士論文,指導教授: 葉怡成、周文杰。
  37. 36、 羅俊雄,(1996) ,強地動特性及耐震評估有關之參數,電信與運輸系統之耐震安全評估與補強準則,2-3。
  38. 37、 蘇鼎鈞、王劍虹,(2000) ,員林地區集集大地震土壤液化評估案例探討,地工技術, (81) ,57-68。
  39. 38、 Bollina, M. G., (1970). Surface faulting and related effects: in Earthquake Engineering, R. L. Wiegel, Editor, Prentice-Hall, Englewood Cliffs, New Jersey, 47-74.
  40. 39、 Cheng, C. T., Chiou, S. J., Lee, C. T., and Tsai, Y. B., (2007). Study on probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake. Journal of GeoEngineering, 2(1), 19-28.
  41. 40、 Cheng, C. T., Hsieh, P. S., Lin, P. S., Yen, Y. T., Chan, C. H., Beer, M., ... and Au, I. S. K., (2015). Probability seismic hazard mapping of Taiwan. Encyclopedia of Earthquake Engineering, 10, 978-3.
  42. 41、 Chiou, B. S. J., and Youngs, R. R., (2008). Chiou-Youngs NGA ground motion relations for the geometric mean horizontal component of peakand spectral ground motion parameters, Earthquake Spectra 24,173–215.
  43. 42、 Chiu, H. C. and Ni, S. D., (1993). The attenuation of peak groundacceleration, Syposium on Taiwan Strong Motion InstrumentionProgram, 60-66.
  44. 43、 Coppersmith, K. J., (1991). Seismic source characterization for engineering seismic hazard analyses. Proceeding Fourth International Conference on Seismic Zonation, Stanford University, 4, 3-60.
  45. 44、 Cornell, C. A., (1968). Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58,1583-1606.
  46. 45、 Davison, F. C., and Scholz, C. H., (1985). Frequency-Moment Distribution of Earthquakes in the Aleutian Arc, A Test of the Characteristic Earthquake Model. Bull. Seismo. Soc. Am., 75, 1349-1361.
  47. 46、 EERI Committee on Seismic Risk, (1989). The basics of seismic risk analysis, Earthquake Spectra, 5, 675-702.
  48. 47、 Iwasaki, T., Tokida, K., and Tatsuoka, F., (1981). Soil liquefaction potential evaluation with use of the simplified procedure.
  49. 48、 Lin, P. S., and Lee, C. T., (2008). Ground-motion attenuation relationships for subduction-zone earthquakes in northeastern Taiwan, Bull. Seism. Soc. Am. 98, 220-240.
  50. 49、 Lin, P. S., Lee, C. T., Cheng, C. T., and Sung, C. H., (2011). Response spectral attenuation relations for shallow crustal earthquakes in Taiwan: Engineering Geology,121,150-164.
  51. 50、 Liu K. S. and Y. B. Tsai., (2005). Attenuation Relationships of Peak Ground Acceleration and Velocity for Crustal Earthquakes in Taiwan,Bull. Seism. Soc. Am., 95, 1045–1058.
  52. 51、 Matsuda, T., (1975). Magnitude and recurrence interval of earthquakes from a fault associated, J. Seism. Soc. Japan, Series 2, 28, 268-283.
  53. 52、 National Research Council., (1988). Probabilistic Seismic Hazard Analysis, National Academic Press, Washington, D.C., 97.
  54. 53、 Schwartz, D. P., and Coppersmith, K. J., (1984). Fault Behavior and Characteristic Earthquakes: Example from the Wasatch and San Andreas Fault Zones, J. Geophys. Res., 89, 5681-5698.
  55. 54、 Shyu, J.B.H., Chuang, Y. R., Chen, Y. L., Lee, Y. R. and Cheng, C. T., (2016). A new on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr. Atmos. Ocean. Sci., 27, 311-323.
  56. 55、 Slemmons, D. B., (1982). Determination of design earthquake magnitudes for microzonation, Proceedings, 3rd International Earthquake Microzonation conference, Seattle, Washington, 1, 119-130
  57. 56、 Tsai, C. C., Loh, C. H. and Yeh, Y. T., (1987). Analysis of Earthquake Risk in Taiwan Based on Seismotectonic Zones, Mem. Geol. Soci., China, 9, 413-446
  58. 57、 Tsai, Y. B. and Bolt, B. A., (1983), An analysis of horizontal peak ground acceleration and velocity from SMART 1 array data, Bull. Inst.Earth Sciences, Academic Sinica, 3, 105-126
  59. 58、 Wallace, R. E., (1970). Earthquake recurrence intervals on the San Andreas fault,Geological Society of America Bulletin, 81, 2875-2889.
  60. 59、 Wesnousky, S. G., (1994). The Gutenberg-Richter or Characteristic Earthquake Distribution, Which Is It? Bull. Seismo. Soc. Am., 84, 1940-1959.
  61. 60、 Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Liam, F.W.D., Harder, L.F., Jr., Hynes, M.E., Ishihara, K., Koester, J.P., Laio, S.S.C., Marcuson, W.F., III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., and Stokoe, K.H., (2001). Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 10, 817−833.
  62. 61、 Youngs, R.R., and Coppersmith, K. J., (1985). Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, Bull.Seism. Soc. Am., 75, 939-964.