Title

光通訊用碳包覆雙塑膠被覆光纖之製造

Translated Titles

Fabrication of carbon-sealed double-coated optical fibers for optical telecommunications

DOI

10.6845/NCHU.2009.00231

Authors

陳村松

Key Words

光纖 ; 鍍膜 ; 非晶質 ; 碳 ; 電漿輔助化學氣相沉積法 ; Optical fiber ; Coating ; Amorphous ; Carbon ; Plasma enhanced chemical vapor deposition(PECVD)

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

薛顯宗

Content Language

繁體中文

Chinese Abstract

碳包覆雙塑膠被覆光纖是藉由利用電漿輔助化學氣相沉積法在具有雙塑膠被覆保護層的商用光纖上製備碳薄膜所構成。碳包覆雙塑膠被覆光纖具有高的機械強度、高的水氣阻絕性,與極佳的抗彎折能力。同時,碳鍍層亦可保護雙塑膠被覆光纖不被損害保護雙塑膠被覆光纖不被損害,具有抵抗磨耗、附著性佳、硬度高,以及不易被剝離的特性,非常符合光纖應用所需的必備條件。碳包覆雙塑膠被覆光纖相較於傳統的雙塑膠被覆光纖和密封鍍層光纖,更適用於光通訊系統。此外,碳包覆雙塑膠被覆光纖在水氣抵抗和不同直徑彎曲測試結果也優於鎳包覆雙塑膠被覆光纖。

English Abstract

The carbon-sealed double-coated optical fiber is constructed from double-coated optical fiber sealed with a carbon film fabricated by plasma enhanced chemical vapor deposition. This fiber has high mechanical strength and high resistance to moisture penetration. Additionally, external damage protection, abrasion resistance, adhesion, toughness, coating stripping force, and bending insensitivity meet the fiber requirements. Carbon-sealed double-coated optical fibers are better than conventional double-coated optical fibers and hermetically coated optical fibers for use as optical telecommunications. Moreover, this fiber is superior to nickel-sealed double-coated optical fiber in terms of water repellency and bending diameter.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [2] G. Keiser, “Optical fiber communication,” Second Edition, McGraw-Hill, New York (1991).
    連結:
  2. [3] K. C. Kao and G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” IEE Proceedings 133 (1966) 1151-1158.
    連結:
  3. [4] W. A. Gambling, “The rise and rise of optical fibers,” IEEE Journal on Selected Topics in Quantum Electronics 6 (2000) 1084-1093.
    連結:
  4. [6] C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, “Strength and fatigue of silica optical fibers,” Journal of Lightwave Technology 7 (1989) 1360-1370.
    連結:
  5. [11] P. C. P. Bouten and G. de With, “Crack nucleation at the surface of stressed fibers,” Journal of Applied Physics 64 (1988) 3890-3900.
    連結:
  6. [12] A. Iino, M. Kuwabara, and K. Kokura, “Mechanisms of hydrogen-induced losses in silica-based optical fibers,” Journal of Lightwave Technology 8 (1990) 1675-1679.
    連結:
  7. [15] M. M. Bubnov, E. M. Dianov, and S. L. Semjonov, “Maximum value of fatigue parameter n for hermetically coated silica glass fibers,” Technology Digest Optical Fiber Communication Conference, ThF2 (1992) 216.
    連結:
  8. [16] K. E. Lu, G. S. Glaesemann, R. V. Vandewoestine, and G. Kar, “Recent development in hermetically coated optical fiber,” Journal of Lightwave Technology 6 (1988) 240-244.
    連結:
  9. [17] S. Aisenberg, “Properties and application of diamond-like carbon films,” Journal of Vacuum Science and Technology 2 (1984) 369-371.
    連結:
  10. [19] J. L. Armstrong, M. J. Matthewson, M. G. Juarez, and C. Y. Chou, “The effect of diffusion rates in optical fiber polymer coatings on aging,” Proceedings of SPIE 3848 (1999) 62-69.
    連結:
  11. [20] S. T Shiue and H. Ouyang, “Effect of polymeric coatings on the static fatigue of double-coated optical fibers,” Journal of Applied Physics 90 (2001) 5759-5762.
    連結:
  12. [21] D. R. Biswas, “Optical fiber coatings of biomedical applications,” Optical Engineering 31 (1992) 1400-1403.
    連結:
  13. [22] C. A. Taylor and W. K. S. Chiu, “Characterization of CVD carbon films for hermetic optical fiber coatings,” Surface and Coatings Technology 168 (2003) 1-11.
    連結:
  14. [23] D. P. Dowling, K. Donnelly, T. P. O'Brien, A. O'Leary, T. C. Kelly, and W. Neuberger, “Application of diamond-like carbon films as hermetic coatings on optical fibers,” Diamond and Related Materials 5 (1996) 492-295.
    連結:
  15. [24] Y. Katsuyama, N. Yoshizawa, and T. Yashiro, “Field evaluation result on hermetically coated optical fiber cables for practical application,” Journal of Lightwave Technology 9 (1991) 1041-1046.
    連結:
  16. [25] J. Robertson, “Improving the properties of diamond-like carbon,” Diamond and Related Materials 12 (2003) 79-84.
    連結:
  17. [28] H. S. Seo, U. C. Paek, K. Oh, and C. R. Kurkjian, “Melt coating of tin on silica optical fiber,” Journal of Lightwave Technology 16, 2355-2364 (1998).
    連結:
  18. [29] N. Yoshizawa, H. Tada, and Y. Katsuyama, “Strength improvement and fusion splicing for carbon-coated optical fiber,” Journal of Lightwave Technology 9 (1991) 417-421.
    連結:
  19. [30] S. T. Shiue, J. L. He, L. Y. Pan, and S. T. Huang, “Thermally induced stress voids in hermetically carbon-coated optical fibers with different coating thickness,” Thin Solid Films 406 (2002) 210-214.
    連結:
  20. [31] S. T. Shiue, H. H. Hsiao, T. Y. Shen, H. C. Lin, and K. M. Lin, “Mechanical strength and thermally induced stress voids of carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition method with different hydrogen/methane ratio,” Thin Solid Films 483 (2005) 140-146.
    連結:
  21. [33] R. S. Chu and S. T. Shiue, “Fabrication of nickel sealed double-coated optical fibers for use as optical transmission lines,” Accepted by Journal of Lightwave Technology.
    連結:
  22. [34] H. C. Lin, S. T. Shiue, Y. H. Cheng, T. J. Yang, T. C. Wu, and H. Y. Lin, “Characteristics of carbon coatings on optical fibers prepared by plasma enhanced chemical vapor deposition using different argon/methane ratios,” Carbon 45 (2007) 2004-2010.
    連結:
  23. [35] H. C. Lin, S. T. Shiue, T. Y. Shen, and K. M. Lin, “Effect of H2/CH4 ratios on the structure and properties of coatings for hermetically carbon-coated optical fiber prepared by plasma enhanced chemical vapor deposition method,” Journal of Engineering, National Chung Hsing University 17 (2006) 75-85.
    連結:
  24. [36] Yi-Ming Chou, “The effects of process parameters on hermetically carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition method,” Master Thesis, Department of Materials Science and Engineering, National Chung Hsing University (2006).
    連結:
  25. [37] J. Robertson, “Diamond-like amorphous carbon,” Materials Science and Engineering R 37 (2002) 129-281.
    連結:
  26. [38] F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” The Journal of Chemical Physical 53 (1970) 1126-1130.
    連結:
  27. [39] P. C. Eklund, J. M. Holden, and R. A. Jishi, “Vibrational modes of carbon nanotubes; spectroscopy and theory,” Carbon 33 (1995) 959-972.
    連結:
  28. [40] C. De Martino, F. Demichelis, and A. Tagliaferro, “Determination of the sp3/sp2 ratio in a-C:H films by infrared spectrometry analysis,” Diamond and Related Materials 4 (1995) 1210-1215.
    連結:
  29. [41] T. Young, “An essay on the cohesion of fluids,” Philosophical Transactions of the Royal Society of London 95 (1805) 65-87.
    連結:
  30. [43] M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength measurement of optical fibers by bending,” Journal of the American Ceramic Society 69 (1986) 815-821.
    連結:
  31. [44] X. Zou, K. Itoh, and H. Toratani, “Transmission loss characteristics of fluorophosphate optical fibers in the ultraviolet to visible wavelength region,” Journal of Non-Crystalline Solids 215 (1997) 11-20.
    連結:
  32. [45] S. T. Shiue, “Determination of interfacial shear strength between the glass fiber and primary coating in double-coated optical fibers from mechanical strip forces,” Applied Optics 41 (2002) 1649-1653.
    連結:
  33. [46] S. T. Shiue and K. Y. Chen, “Design of double-coated optical fibers to minimize mechanical strip forces,” Journal of Lightwave Technology 15 (1997) 1669-1674.
    連結:
  34. [47] M. Benlahsen, B. Racine, K. Zellama, and G. Turban, “On the hydrogen incorporation, intrinsic stress and thermal stability of hydrogenated amorphous carbon films deposited from an electron cyclotron resonance plasma,” Journal of Non-Crystalline Solids 283 (2001) 47-55.
    連結:
  35. [48] M. Lejeune, M. Benlahsen, and R. Bouzerar, “Stress and structure relaxation in hydrogenated amorphous carbon films,” Applied Physics Letters 84 (2004) 344-346.
    連結:
  36. [49] T. Heitz, B. Dre´villon, C. Godet, and J.E. Boure´e, “Quantitative study of C–H bonding in polymerlike amorphous carbon films using in situ infrared ellipsometry,” Physical Review B 58 (1998) 13957-13973.
    連結:
  37. [50] L. J. Bellamy, “The infra-red spectra of complex molecules,” Methuen, London (1958).
    連結:
  38. [51] O. Durand-Drouhin, M. Lejeune, R. Bouzerar, and M. Benlahsen, “The subimplantation model for hydrogenated amorphous carbon films deposited in electron cyclotron resonance plasma,” Materials Science in Semiconductor Processing 4 (2001) 213-215.
    連結:
  39. [52] K. Yamamoto, Y. Ichikawa, T. Nakayama, and Y. Tawada, “Relationship between plasma parameters and carbon atom coordination in a-c:h films prepared by rf glow discharge decomposition,” Japanese Journal of Applied Physics 27 (1988) 1415-1421.
    連結:
  40. [53] S. H. Cho, Z. T. Park, J. G. Kim, and J. H. Boo, “Physical and optical properties of plasma polymerized thin films deposited by PECVD method,” Surface and Coatings Technology 174-175 (2003) 1111-1115.
    連結:
  41. [54] R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Industrial Engineering Chemistry 28 (1936) 988-994.
    連結:
  42. [55] Jen-Feng Yu, “Effects of rapid thermal annealing on the properties of hermetically carbon-coated optical fibers prepared by plasma enhanced chemical vapor deposition,” Master Thesis, Department of Materials Science and Engineering, National Chung Hsing University (2008).
    連結:
  43. [1] B. Chomycz, “Fiber optic installer’s field manual,” McGraw-Hill, New York (2000).
  44. [5] D. K. Mynbaev and L. L. Scheiner, “Fiber-optic communications technology,” Prentice Hall, New Jersey (2001).
  45. [7] 吳曜東, “光纖原理與應用,” 全華科技圖書公司 (1997).
  46. [8] A. H. Cherin, “An Introduction to optical fibers,” McGraw-Hill, New York (1983).
  47. [9] K. C. Kao, “Optical fiber system: technology, design, and applications,” McGraw-Hill, New York (1982).
  48. [10] 龔祖德, “光纖通訊技術,” 全華科技圖書公司 (1997).
  49. [13] 汪建民, “陶瓷技術手冊,” 中華民國陶瓷粉末冶金協會 (1994).
  50. [14] M. J. Matthewson, “Fiber optics reliability and testing,” Optical science and technology, Boston (1993).
  51. [18] J. P. Powers, “An introduction to fiber optic systems,” Aksen Associates, Boston (1993).
  52. [26] A. A. Abramov, M. M. Bubnov, A. M. Prokhorov, S. L. Semjonov, A. G. Shchebunjaev, A. N. Gurjanov, G. G. Devjatykh, and V. F. Khopin, “Optical performance of low-loss aluminum-coated fibers exposed to hydrogen and temperature cycling,” Technology Digest Optical Fiber Communication Conference, Optical Society of America, Washington, DC, 4 (1993) 76-77.
  53. [27] V. A.Bogatyrjov, E. M. Dianov, A. S. Biriukov, A. A. Sysoliatin, V. V. Voronov, A. G. Khitun, M. H. Do, and J. H. Kim, “Performance of high-strength Cu-coated fibers at high temperatures,” Technology Digest Optical Fiber Communication Conference, Sponsored by IEEE, Piscataway, NJ, USA, WL20 (1997) 182-183.
  54. [32] J. T. Kohli and G. S. Glaesemann, “Corning's hermetically coated erbium-doped specialty fibers,” http://www.corning.com/docs/specialtymaterials/technicalpaper/Hermetic_WP.pdf.
  55. [42] J. M. Gere, “Mechanics of materials, 5th Ed.,” Brooks/Cole, Thomson Learning, Pacific Grove, CA, (2001).