Title

雙性超分枝狀高分子的合成與應用

Translated Titles

Preparation and Applications of Amphiphilic Hyperbranched Polymers Using an“A2+B3”Approach

Authors

林漢昇

Key Words

超分支狀高分子 ; 雙性 ; 聚醯胺酸 ; 聚醯亞胺 ; 氧化石墨 ; 單層 ; 石墨烯 ; 插層 ; 脫層 ; Polymer ; Amphiphilic ; Polyamicacid ; Polyimide ; Graphene Oxide ; Single-Layer ; Graphene ; Intercalation ; Exfoliation

PublicationName

中興大學化學工程學系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

鄭如忠

Content Language

繁體中文

Chinese Abstract

本研究利用”A2+B3”合成策略製備雙性超分枝狀高分子,開發酸鹼應答型超分枝狀高分子,經由合成策略選擇可調控超分枝狀分子之分子量與分歧程度,探討雙性立體分子於溶液中自發排列之形狀、化學/物理特性。高分子材料中立體樹枝狀高分子是一種創新的奈米材料,為三度立體空間的人造球型高分子,具有高分歧度與豐富的末端官能基,球狀表面可以化學方式改變其官能基調整溶解度及化學活性。本研究合成之超分支狀高分子,利用商業化三官能基聚醚胺JeffamineR T-403與雙官能基4,4’-二苯醚四羧酸二酐(4,4-Oxydiphthalic anhydride; ODPA),合成出具有雙性特色的聚醯胺酸(Hyperbranched Polyamic acid; HBPAA)與聚醯亞胺(Hyperbranched Polyimide; HBPI)之A2B3超分枝狀高分子。 研究中探討分子間藉由親疏水力與幾何形狀在溶液中自組裝之微胞行為,雙性樹枝狀分子以非共價鍵的作用在溶液中形成微胞,進而組裝建構而成三維幾何形狀,以A2+B3形式製備出的超分枝狀聚醯胺酸與聚亞醯胺具有良好的有機可溶性,分子量介於 5000~7500 g/mol,經由酸鹼值調整可分散於水溶液中,增加其親水性材料開發之應用。此雙性超分枝狀高分子具有 pH 敏感之特性,在低 pH 時微胞顯現較疏水的性質,具有較大的粒徑;而在高 pH 則呈現相反的性質。利用此特性可使高分子微胞於不同 pH 的環境下,有效改變微胞的結構與其親疏水性,有機會做為多功能性藥物載體包覆藥物進行傳遞與釋放,值得一提的是在不同酸鹼的環境下,亦具有不同的螢光發光特性,也許可作為藥物追蹤劑之應用。 接下來我們利用有機與無機混成材料的概念,藉由超分支狀高分子聚醯胺酸(HBPAA)與聚醯亞胺(HBPI)插層氧化石墨,研究氧化石墨之插層反應機制,以不同的插層條件控制石墨層板間開闔大小,探討氧化石墨的層間距與脫層條件控制,成功利用溶液製程合成出單層氧化石墨烯,結合奈米技術與高分子化學合成將可激盪出更多材料上新穎的應用,經由成功合成出立體雙性超分支狀聚醯胺酸與聚醯亞胺,真正落實開發具功能性之材料。

English Abstract

A facile synthesis of amphiphilic hyperbranched polymers (HP) consisting of poly(amic acid) and polyimide was developed via “A2+B3” approach from difunctional 4,4’-oxydiphthalic anhydride (ODPA; A2 type monomer) and hydrophilic poly(oxyalkylene)-amine T403 (B3 type monomer). Various amphiphilic hyperbranched poly(amic acid)s (HBPAAs) with terminal amine functionalities and amidoacid structures were prepared through ring-opening polyaddition at room temperature, followed by thermal imidization process for the formation of hyperbranched polyimides (HBPIs), accordingly. The resulting HBPIs were analyzed by GPC, indicating the molecule weights of 5000~7000 g/mol with a distribution of polydispersity between 2.0 and3.8. The amine titration for HBPIs indicated the peripheral total-amine contents to be 8.32~18.32 mequiv/g dependent on compositions. This project is intended to investigate the aspects regarding the amphiphilic HPs, and the issues that arise from the use of self-assembly approach for the construction of nanoobjects. The amphiphilic HPs could be altered through the balancing between the hydrophobic backbone and the hydrophilic carboxylate salts or quaternary ammonium salts, depending on the pH value of the solution. We also employed the photoluminescence spectra to observe the variation of amphiphilic HPs in solution conditions. The photofluorescence for amphiphilic HPs appeared at 410 and 361 nm wavelengths when exposed to UV irradiation, depending on the pH value of the solution. This indicates the macromolecules underwent a conformation change at various pH conditions, impling the potential as the nano-container with molecular fluorescence tracer in aqueous solution. Furthermore, atom-thick graphene oxide platelets (GOPs) based on amphiphilic HP are isolated by a solution process involving direct exfoliation of natural graphite stacked layers. The globular HPs were successfully introduced into the interlayer space of graphite oxide (GO) to prepare a series of GOP/HP nanohybrids that revealed intercalated and exfoliated morphology. The resulting nanascale GOPs were observed to be single-layer sheets in transmission electron microscopy image along with well-defined diffraction patternsin powder X-ray diffraction, They also exhibited good dispersibility in water and polar organic solvents. Incorporating the bulky 3D globular structure into GO would create significant influence on the solution exfoliated approach, and offer an interesting challenge for the formation of unique GOP/HP nanohybrids. This methodology paves the way for obtaining individual GOP nanosheets, opening up enormous opportunities to use the platelet-like nanographene oxide materials for many technological applications.

Topic Category 工學院 > 化學工程學系所
工程學 > 化學工業
Reference
  1. 1. M. Seiler, Fluid Phase Equilibria. 2006, 241, 155.
    連結:
  2. 2. M. Jikei, Kakimoto, High Perform. Polym. 2001, 13, 33.
    連結:
  3. 3. C. Gao, D. Yan, Prog. Polym. Sci. 2004, 29, 183.
    連結:
  4. 4. C. R. Yates, W. Hayes, Europ.Polym. J. 2004, 40, 1257.
    連結:
  5. 5. Y. H. Kim, O. W. Webster, J. Am. Chem. Soc. 1990, 112, 4592.
    連結:
  6. 6. S. M. Grayson, J. M. J.Frechet, Chem. Rev. 2001, 101, 3819.
    連結:
  7. 7. C. J. Hawker, J. M. J. Frechet, J. Am. Chem. Soc. 1990, 112, 7638.
    連結:
  8. 8. E. Buhleier, W. Wehner, F. Vogtle, Synthesis. 1978, 155.
    連結:
  9. 10. A. Burgath, A. Sunder, H. Frey, Macromol. Chem. Phys. 2000, 201, 782.
    連結:
  10. 11. R. Mezzenga, L. Boogh, J. A. E. Manson, Compos. Sci. Technol. 2001, 61, 787.
    連結:
  11. 12. A. Sunder, R. Mulhaupt, H. Frey, Macromolecules. 2000, 33, 309.
    連結:
  12. 14. Y. H. Kim, O. W. Webster, J. Am.Chem. Soc. 1990, 112, 4592.
    連結:
  13. 16. M. Suzuki, A. Saegusa, T. Li, Macromolecules. 1992, 25, 7071.
    連結:
  14. 17. H. Magnusson, E. Malmstrom, A. Hult, Macromol. Rapid. Commun. 1999, 20, 453.
    連結:
  15. 18. H. T. Chang, J. M. J. Frechet, J. Am.Chem. Soc. 1999, 121, 2313.
    連結:
  16. 20. T. Emrick, H. T. Chang, J. M. J. Frechet, Macromolecules. 1999, 32, 6380.
    連結:
  17. 21. D. Yan, C. Gao, Macromolecules. 2000, 33, 7693.
    連結:
  18. 24. P. R. Young, J. Polym.Sci:Part A. 1990, 28, 3107.
    連結:
  19. 25. J. Fang, H. Kita, K. i. Okamoto, Macromolecules. 2000, 33, 4639.
    連結:
  20. 26. H. Chen, J. Yin, Poly. Sci., Part A: Poly. Chem. 2002, 40, 3804.
    連結:
  21. 29. J. Hao, M. Jikei, Kakimoto, M, A., Macromol. Symp. 2003, 199, 233.
    連結:
  22. 30. K. Xu, J. Economy, Macromolecules. 2004, 37, 4146.
    連結:
  23. 31. H. Gao, D. Wang, S. Guan, W. Jiang, Z. Jiang, W. Gao, D. Zhang, Macromol. Rapid Commum. 2007, 28, 252.
    連結:
  24. 32. D. Yan. C. Gao, Macromolecules. 2000, 33, 7693.
    連結:
  25. 33. C. Gao. W. Tang, D.Y. Yan, J Polym Sci, Part A: Polym Chem. 2002, 40, 2340.
    連結:
  26. 34. Y. Liu, T. S. Chung, J. Poly. Sci., Part A: Poly. Chem. 2002, 40, 4563.
    連結:
  27. 35. S. J. Park, K. L. Jin, Mater. Chem. Phys. 2008, 108, 214.
    連結:
  28. 36. F. Kurzer, K. D. Zadeh, Chem. Rev. 1967, 67, 107.
    連結:
  29. 39. D. R. Vutukuri, S. Basu, S. Thayumanavan, J. Am. Chem. Soc. 2004, 126, 15636.
    連結:
  30. 40. B. Lindman, P. Alexandridis, Amphiphilic Block Copolymers, 2000.
    連結:
  31. 42. V. Percec, B. C. Won, M. Peterca, P. Heiney, J. Am. Chem. Soc. 2007, 129, 11265.
    連結:
  32. 45. Y. Li, B. S. Lokitz, C. L. McCormick, Angew. Chem. Int. Ed. 2006, 45, 5792.
    連結:
  33. 47. J. Z. Du and S. P. Armes, J. Am. Chem. Soc. 2005, 127, 12800.
    連結:
  34. 48. M. Oishi, K. Kataoka and Y. Nagasaki, Bioconjugate Chem. 2006,
    連結:
  35. J. Am. Chem. Soc. 2009, 131, 3804.
    連結:
  36. 50. C. Wang, Y. S. Guo, Y. P. Wang, H. P. Xu, X. Zhang, Chem.
    連結:
  37. 52. Y. W. Li, R. Tong, H. S. Xia, H. J. Zhang, J. Xuan, Chem.
    連結:
  38. Commun. 2010, 46, 7739.
    連結:
  39. 53. Y. Zhao, J. Mater. Chem. 2009, 19, 4887.
    連結:
  40. 54. J. S. Katz and J. A. Burdick, Macromol. Biosci. 2010, 10, 339.
    連結:
  41. Commun. 2010, 31, 1588.
    連結:
  42. Biomacromolecules. 2010, 11, 1564.
    連結:
  43. Biomaterials. 2010, 31, 5643.
    連結:
  44. DOI: 10.1039/c1py00094b.
    連結:
  45. 61. A. K. Geim, Nature Materials. 2007, 6 , 183.
    連結:
  46. 65. N. Grossiord, J. Loos, C. E. Koning, J. Mater. Chem. 2005, 15, 2349.
    連結:
  47. 66. C. N. R. Rao, Kanishka Biswas, K. S. Subrahmanyam, A. Govindaraj, J. Mater. Chem. 2009, 19, 2457.
    連結:
  48. 69. K. H. Chang, Y. F. Lee, C. C. Hu, C. I. Chang, C. L. Liu , Y. L. Yang, Chem.Commun. 2010, 46, 7957.
    連結:
  49. 72. V. E. Konstantin, B. Aaron, H. Karsten, J. Johannes, Gary, L. K. L. Ley, L. Jessica, McChesney, O. Taisuke, A. R. Sergey, R. Jonas, R. Eli, K. S. Andreas, W. Daniel, B. W. Heiko, Nat. Mater. 2009, 8, 203.
    連結:
  50. 73. P. W. Sutter, J. I. Flege, E. A. Sutter. Nature Mater. 2008, 7, 406.
    連結:
  51. 76. A. Malesevic, Carbon. 2007, 45, 2932.
    連結:
  52. 83. L. Staudenmaier, BerDtsch Chem Ges. 1898, 31, 1481.
    連結:
  53. 84. G.S. Kwon, T. Okano, Adv. Drug Deliv. Rev. 1996, 21, 107.
    連結:
  54. 85. G.S. Kwon, Crit. Rev. Ther. Drug. 1998, 15, 481.
    連結:
  55. 86. P. V. Torchilin, Journal of Controlled Release. 2001, 73, 137.
    連結:
  56. 87. M. Moffitt, K. Khougaz, A. Eisenberg, Acc. Chem. Res. 1996, 29, 95.
    連結:
  57. 89. Z. Tuzar, P. Kratochvil, Adv. Colloid Interface Sci. 1976, 6, 201.
    連結:
  58. 91. Y. Hernandez, Nature Nanotechnology. 2008, 3, 563.
    連結:
  59. 93. K. L. Wooley, J. M. J. Frechet, C. J. Hawker, Polymer. 1994, 35, 4489
    連結:
  60. 94. I. Gitsov, J.M.J. Frechet, Macromolecules. 1993, 26, 24, 6536
    連結:
  61. 96. Y. Hernandez, V. Nicolosi, M. Lotya, Nat. Nanotechnol. 2008, 3, 9, 563.
    連結:
  62. 100. J. M. Englert, J. Rohrl, C. D. Schmidt, Adv. Mater. 2009, 21,42, 4, 265
    連結:
  63. 103. P. Blake, P. D. Brimicombe, R. R. Nair, Tim J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, Ernie W. Hill, Andre K. Geim, K. S. Novoselov, Nano Lett. 2008, 8, 1704.
    連結:
  64. 104. N. Liu1, F. Luo, H. Wu1, Y.i Liu, C. Zhang, J. Chen, Adv. Funct. Mater. 2008, 18, 1518.
    連結:
  65. 9. T. E. Long, J. S. Riffle, Ward, T. C. Esker, Fibers and Films. 2005.
  66. 13. Y. H. Kim, O. W. Webster, Polym. Prepr. 1988, 29, 310.
  67. 15. J. M. J. Frechet, M. Henmi, I. Gitsov, S. Aoshima, Ledu, M. Grubbs, Science. 1995, 269, 1080.
  68. 19. M. Jikei, S. H. Chon, M. Kakimoto, S. Kawauchi, T. Imase, J. Watanabe, Macromolecules. 1999, 32, 2061.
  69. 22. C. Gao, D. Yan, Chem. Commun. 2001, 1, 107.
  70. 23. 江選雅,聚醯亞胺的合成及其在 LCD 上的應用,化工資訊,1999, 13, 7, 43.
  71. 27. J. Hao, M. Jikei, M. A. Kakimoto, Macromolecules. 2002, 35, 5372.
  72. 28. J. Hao, Jikei, M.; Kakimoto, M, A., Macromolecules. 2003, 36, 3519.
  73. 37. M. Yang, W. Wang, F. Yuan, X. Zhang, J. Li, F. Liang, G. Wegner, J. Am. Chem. Soc. 2005, 127, 15107.
  74. 38. Y. Chen, A. V. Ambade, D. R. Vutukuri, S. Thayumanavan, J. Am. Chem. Soc. 2006, 128, 14760.
  75. 41. V. Percec, A. E. Dulcey, V. S. K. Balagurusamy, Y. Miura, J. Smidrkal, M. Peterca, S. Nummelin, U. Edlund, S, D, Hudson, P. A. Heiney, H. Duan, S. N. Magonov, S. A. Vinogradov, Nature. 2004, 430, 764.
  76. 43. J. E. Chung, M. Yokoyama, M. Yamato, T. Aoyagi, Y. Sakurai, T. Okano, Controlled Release, 1999, 62, 115.
  77. 44. M. Nakayama, T. Okano, T. Miyazaki, F. Kohori, K. Sakai, M. Yokoyama, Controlled Release. 2006, 115, 46.
  78. 46. S. Y. Liu, J. V. M. Weaver, Y. Q. Tang, N. C. Billingham, S. P. Armes, Macromolecules. 2002, 35, 6121.
  79. 17, 677.
  80. 49. W. F. Dong, A. Kishimura, Y. Anraku, S. Chuanoi, K. Kataoka,
  81. Commun. 2009, 5380.
  82. 51. N. Ma, Y. Li, H. P. Xu, Z. Q. Wang, X. Zhang, J. Am. Chem. Soc. 2010, 132, 442.
  83. 55. J. M. Schumers, C. A. Fustin, J. F. Gohy, Macromol. Rapid
  84. 56. F. Ercole, T. P. Davis, R. A. Evans, Polym. Chem. 2010, 1, 37.
  85. 57. J. Y. Liu, W. Huang, Y. Pang, X. Y. Zhu, Y. F. Zhou, D. Y. Yan,
  86. 58. J. Y. Liu, Y. Pang, W. Huang, X. Y. Zhu, Y. F. Zhou, D. Y. Yan, Biomaterials. 2010, 31, 1334.
  87. 59. J. Y. Liu, W. Huang, Y. Pang, X. Y. Zhu, Y. F. Zhou, D. Y. Yan,
  88. 60. C. Chen, G. Liu, X. Liu, S. Pang, C. Zhu, Polym. Chem. 2011,
  89. 62. K. S. Geim, A. K. Morozov, S. V. Jiang, D. Zhang, Y. Dubonos, S. V. Grigorieva, I. V. Firsov, A. A.Science. 2004, 306, 666.
  90. 63. K. S. Novoselov1, A. K. Geim1, S. V. Morozov, D. Jiang1, Y. Zhang1, S. V. Dubonos, I. V. Grigorieva1, A. A. Firsov, Science. 2004, 306, 666.
  91. 64. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature. 2006, 442, 282.
  92. 67. K. G. Andre, K. Philip, Carbon Wonderland. 2008, 8. 21
  93. 68. C. Lee, X. Wei1, J. W. Kysar, James Hone, Science. 2008, 321, 5887, 385.
  94. 70. M. Terronesa, A. R. Botello, Nano Today. 2010, 5, 4, 351.
  95. 71. W. A. Heera, C. Bergera, X. Wua, P. N. Firsta, E. H. Conrada, X. Lia, T. Lia, M. Sprinklea, J. Hassa, M. L. Sadowskib, M. Potemskib, G. Martinezb, Solid State Commun. 2007, 143, 92.
  96. 74. K. S. Kim1, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Choi, Nature. 2009, 457, 706.
  97. 75. P. Blake, P. D. Brimicombe, R. R. Nair, Nano Lett. 2008, 8, 6, 1704.
  98. 77. V. C. Tung, M. J. Allen, Y. Yang, NatureNanotechnol. 2009, 4, 1, 25.
  99. 78. X. Liang, Z. Fu, S. Y. Chou, Nano Lett. 2007, 7, 12, 3840
  100. 79. Li D, Muller MB, Gilje S, et al.Nature Nanotechnol. 2008, 3,101.
  101. 80. Hummes, W. Offena, J Am Chem Soc. 1958, 80, l339.
  102. 81. T. Nakkjma, Matsuo Y. Carbon. 1994, 32, 3, 469.
  103. 82. C. B. Benjamin, Proceedings of the Royal Society of
  104. London. 1859, 10, 249.
  105. 88. P. Munk, K. Prochazka, Z. Tuzar, S. E. Webber, Chemtech. 1998, 28, 20.
  106. 90. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C. N. LauNano Lett. 2007, 7, 9, 2645.
  107. 92. N. Behabtu, Jay R. Lomeda, Micah J. Green, A. L. Higginbotham, A. Sinitskii,D. V. Kosynkin, D. Tsentalovich, A. Nichol, Nature Nanotechnology. 2010, 5, 406.
  108. 95. U. Khan, A. O'Neill, M. Lotya, Small. 2010, 6, 7, 864.
  109. 97. C. E. Hamilton, J. R. Lomeda, Z. Sun, Nano Lett. 2009, 9, 10, 3460
  110. 98. B. Sanji, D. T. Drza. Nano Lett. 2009, 9, 1, 167.
  111. 99. W. Qian, R. Hao R, Y. Hou, Nano Res. 2009, 2, 706.
  112. 101. C. Knieke, A. Berger, M. Voigt, Carbon. 2010, 48, 11, 3196.
  113. 102. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nat Nanotechnol. 2008, 3. 538