Title

克雷伯氏肺炎菌基因體中無法選殖的基因

Translated Titles

Non-cloneable Sequences in Klebsiella pneumoniae Genome Projects

DOI

10.6845/NCHU.2013.00310

Authors

陳俊翔

Key Words

克雷伯氏肺炎菌 ; 克雷白氏肺炎菌 ; 基因體 ; 散彈槍定序 ; 選殖 ; klebsiella pneumoniae ; genome ; shotgun sequence ; clone

PublicationName

中興大學生命科學系所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

洪慧芝

Content Language

英文

Chinese Abstract

在台灣,有四株克雷伯氏肺炎菌(NTUH-K2044, NK8, NK29, NK245)分別在過去利用散彈槍定序法完成全基因體定序。傳統散彈槍定序的過程中,必須先將數倍的染色體DNA破碎成重疊的片段後並轉殖到質體 library進行放大,隨後進行Sanger定序,最後根據讀取的序列片段間重疊涵蓋的部分進行全基因體序列的組裝。一般來說,由於一些普遍存在基因體中的重複序列,電腦組裝往往會因為重複序列讀取片段的錯誤組裝而形成有間隔的數個組裝片段(contigs)。這種組裝序列的片段數目(或者說間隔的數目)對全基因體定序工作的完成度是很重要的指標。然而除了重複序列之外,我們認為在library製備的過程中,倘若有些DNA片段因為某些原因而無法轉殖成功,這些基因體片段可能也會導致序列組裝時產生破碎的現象。 為了驗證這些組裝問題的產生是不是因為基因體序列抑制了clone library的生長,我們分析了四株克雷伯氏肺炎菌散彈槍定序的數據,找出Consed組裝之中全部的間隔片段並且利用NCBI的BLAST功能映對在完成組裝與注解的基因體序列上。剔除掉與已知tRNA及rRNA基因座臨近的部分,其餘的間隔片段再分別依據他們之間的相關距離去歸納,間隔片段間距離小於1kb的歸類成一個共通間隔區域(common gap region; CGR)。我們根據基因注解從14個CGR中挑出29個基因及1個sRNA轉殖到受阿拉伯糖調控的可誘導表現載體上,並在大腸桿菌中誘導表現。藉由分析誘導表現之生長曲線來驗證這些基因片段對大腸桿菌生長可能的抑制。 實驗結果證實,27個成功完成基因轉植的菌株中,有16個菌株在進行阿拉伯糖誘導後或是沒有誘導的時候,生長曲線會被改變,依照影響的結果分為三類:(1)加入阿拉伯糖誘導後,生長曲線有抑制。(2)不論有沒有阿拉伯糖誘導,生長曲線都有抑制或提高。(3)實驗結果無法重複。在16個生長曲線會受到影響的大腸桿菌基因轉殖株中,有兩株分別是帶有sulA和minC的基因,而這兩個基因已經證實與細菌分裂有關。此外,殖入sulA與minC會對生長曲線有影響之外,我們也從顯微鏡中觀察到在阿拉伯糖誘導表現後會導致大腸桿菌外型改變。然而轉入克雷伯氏肺炎菌後,卻無此現象發生。 本篇研究結果驗證了有些無法組裝的間隔片段是由於DNA序列抑制clone library的生長而產生,也從中找尋出會影響細菌生長以及改變外型的重要生長調控基因。然而這些克雷伯氏肺炎菌的基因產物是如何影響大腸桿菌的生理,進而抑制了大腸桿菌的生長或形態,仍有待進一步的分析與研究。

English Abstract

Four K. pneumoniae strains, NTUH-K2044, NK8, NK29, NK245, have been sequenced respectively by whole genome shotgun approach in Taiwan. In the process of traditional shotgun sequencing, multiple copies of the genomic DNA must be sheared into overlapping fragments, ligated to plasmid vectors and transformed into E. coli. After that, the clone library is sequenced by Sanger method and the resulting reads were assembled computationally based on overlapping information. In a shotgun approach, reads containing the repeat sequences of the genome are usually misassembled and this causes gaps between contigs. While gaps were supposed to be eliminated during the finishing phase of the genome project, we consider these might be useful information for functional genomics discovery. By analyzing the gap sequences, it is possible to identify those so-called ‘non-cloneable sequences’ in the genome. These sequences are inhibitory to the growth of e E. coli transformants and thus are likely to be missing during shotgun sequencing approach. To identify whether the genomic sequences inhibit the growth of E. coli, we analyzed the shotgun data of the four K. pneumoniae strains to find out all of the gaps in the initial Consed assembly and located the positions of gaps on each of the finished genomes. Gaps near to known repeats, such as the tRNA and rRNA sequences were excluded. Gaps with a physical distance within 1kb are grouped together into a common gap region (CGR). According to the gene annotation, we picked 30 candidate genes, including 29 protein-coding genes and 1 sRNA gene from 14 CGRs. The candidate sequences are PCR amplified and cloned into the arabinose-inducible expression vector and expression induced in E. coli. The inhibitory effects of these sequences were analyzed by monitoring the growth curve of the E. coli harboring each of the constructs. The results showed that 16 of the 27 candidate sequences have altered the growth curve. The sequences are classified into 3 types: (1) Induction of candidate gene expression inhibits growth. (2) Candidate gene altered the growth curve, regardless of arabinose induction. (3) Non-conclusive, the results are difficult to repeat. Among the 16 influential constructions, we have identified two cell division associated genes, sulA and minC, that not only altered the growth curve of E. coli but also the cell morphology. By analyzing the shotgun assembly gaps we have identified several gap regions shared among the four K. pneumoniae. Our analyses have identified several genes that might have an effect on the growth of bacteria. The effects of K. pneumoniae genes on E. coli physiology are interesting and further investigations are needed to understand the molecular mechanism of their targets.

Topic Category 生命科學院 > 生命科學系所
生物農學 > 生物科學
Reference
  1. [1] P. Gastmeier, K. Groneberg, K. Weist, and H. Ruden, "A cluster of nosocomial Klebsiella pneumoniae bloodstream infections in a neonatal intensive care department: Identification of transmission and intervention," Am J Infect Control, vol. 31, pp. 424-30, Nov 2003.
    連結:
  2. [3] R. W. Tsay, L. K. Siu, C. P. Fung, and F. Y. Chang, "Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection: risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection," Arch Intern Med, vol. 162, pp. 1021-7, May 13 2002.
    連結:
  3. [4] W. C. Ko, D. L. Paterson, A. J. Sagnimeni, D. S. Hansen, A. Von Gottberg, S. Mohapatra, et al., "Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns," Emerg Infect Dis, vol. 8, pp. 160-6, Feb 2002.
    連結:
  4. [5] C. P. Fung, F. Y. Chang, S. C. Lee, B. S. Hu, B. I. Kuo, C. Y. Liu, et al., "A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis?," Gut, vol. 50, pp. 420-4, Mar 2002.
    連結:
  5. [6] J. K. Kim, D. R. Chung, S. H. Wie, J. H. Yoo, S. W. Park, and A. Korean Study Group for Liver, "Risk factor analysis of invasive liver abscess caused by the K1 serotype Klebsiella pneumoniae," Eur J Clin Microbiol Infect Dis, vol. 28, pp. 109-11, Jan 2009.
    連結:
  6. [7] K. M. Yeh, A. Kurup, L. K. Siu, Y. L. Koh, C. P. Fung, J. C. Lin, et al., "Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan," J Clin Microbiol, vol. 45, pp. 466-71, Feb 2007.
    連結:
  7. [8] Y. Kohayagawa, K. Nakao, M. Ushita, N. Niino, M. Koshizaki, Y. Yamamori, et al., "Pyogenic liver abscess caused by Klebsiella pneumoniae genetic serotype K1 in Japan," J Infect Chemother, vol. 15, pp. 248-51, Aug 2009.
    連結:
  8. [9] C. T. Fang, S. Y. Lai, W. C. Yi, P. R. Hsueh, K. L. Liu, and S. C. Chang, "Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess," Clin Infect Dis, vol. 45, pp. 284-93, Aug 1 2007.
    連結:
  9. [10] S. J. Sheu, Y. H. Kung, T. T. Wu, F. P. Chang, and Y. H. Horng, "Risk factors for endogenous endophthalmitis secondary to klebsiella pneumoniae liver abscess: 20-year experience in Southern Taiwan," Retina, vol. 31, pp. 2026-31, Nov 2011.
    連結:
  10. [11] L. Poirel, R. A. Bonnin, and P. Nordmann, "Genetic support and diversity of acquired extended-spectrum beta-lactamases in Gram-negative rods," Infect Genet Evol, vol. 12, pp. 883-93, Jul 2012.
    連結:
  11. [12] A. Endimiani, F. Luzzaro, M. Perilli, G. Lombardi, A. Coli, A. Tamborini, et al., "Bacteremia due to Klebsiella pneumoniae isolates producing the TEM-52 extended-spectrum beta-lactamase: treatment outcome of patients receiving imipenem or ciprofloxacin," Clin Infect Dis, vol. 38, pp. 243-51, Jan 15 2004.
    連結:
  12. [13] M. E. Falagas, P. I. Rafailidis, D. Kofteridis, S. Virtzili, F. C. Chelvatzoglou, V. Papaioannou, et al., "Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study," J Antimicrob Chemother, vol. 60, pp. 1124-30, Nov 2007.
    連結:
  13. [14] K. M. Wu, L. H. Li, J. J. Yan, N. Tsao, T. L. Liao, H. C. Tsai, et al., "Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis," J Bacteriol, vol. 191, pp. 4492-501, Jul 2009.
    連結:
  14. [15] Y. T. Chen, T. L. Lauderdale, T. L. Liao, Y. R. Shiau, H. Y. Shu, K. M. Wu, et al., "Sequencing and comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8 and CTX-M-3 beta-lactamases in Klebsiella pneumoniae," Antimicrob Agents Chemother, vol. 51, pp. 3004-7, Aug 2007.
    連結:
  15. [16] D. L. Paterson and R. A. Bonomo, "Extended-spectrum beta-lactamases: a clinical update," Clin Microbiol Rev, vol. 18, pp. 657-86, Oct 2005.
    連結:
  16. [17] Y. T. Chen, H. Y. Shu, L. H. Li, T. L. Liao, K. M. Wu, Y. R. Shiau, et al., "Complete nucleotide sequence of pK245, a 98-kilobase plasmid conferring quinolone resistance and extended-spectrum-beta-lactamase activity in a clinical Klebsiella pneumoniae isolate," Antimicrob Agents Chemother, vol. 50, pp. 3861-6, Nov 2006.
    連結:
  17. [18] M. Bott, "Anaerobic citrate metabolism and its regulation in enterobacteria," Arch Microbiol, vol. 167, pp. 78-88, Mar 7 1997.
    連結:
  18. [19] M. Bott, M. Meyer, and P. Dimroth, "Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae," Mol Microbiol, vol. 18, pp. 533-46, Nov 1995.
    連結:
  19. [20] Y. T. Chen, T. L. Liao, K. M. Wu, T. L. Lauderdale, J. J. Yan, I. W. Huang, et al., "Genomic diversity of citrate fermentation in Klebsiella pneumoniae," BMC Microbiol, vol. 9, p. 168, 2009.
    連結:
  20. [21] Y. J. Pan, H. C. Fang, H. C. Yang, T. L. Lin, P. F. Hsieh, F. C. Tsai, et al., "Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype," J Clin Microbiol, vol. 46, pp. 2231-40, Jul 2008.
    連結:
  21. [22] C. P. Fung, B. S. Hu, F. Y. Chang, S. C. Lee, B. I. Kuo, M. Ho, et al., "A 5-year study of the seroepidemiology of Klebsiella pneumoniae: high prevalence of capsular serotype K1 in Taiwan and implication for vaccine efficacy," J Infect Dis, vol. 181, pp. 2075-9, Jun 2000.
    連結:
  22. [23] V. L. Yu, D. S. Hansen, W. C. Ko, A. Sagnimeni, K. P. Klugman, A. von Gottberg, et al., "Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections," Emerg Infect Dis, vol. 13, pp. 986-93, Jul 2007.
    連結:
  23. [24] H. Y. Shu, C. P. Fung, Y. M. Liu, K. M. Wu, Y. T. Chen, L. H. Li, et al., "Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates," Microbiology, vol. 155, pp. 4170-83, Dec 2009.
    連結:
  24. [25] J. Hacker and J. B. Kaper, "Pathogenicity islands and the evolution of microbes," Annu Rev Microbiol, vol. 54, pp. 641-79, 2000.
    連結:
  25. [26] S. Censini, C. Lange, Z. Xiang, J. E. Crabtree, P. Ghiara, M. Borodovsky, et al., "cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors," Proc Natl Acad Sci U S A, vol. 93, pp. 14648-53, Dec 10 1996.
    連結:
  26. [30] T. L. Lin, C. Z. Lee, P. F. Hsieh, S. F. Tsai, and J. T. Wang, "Characterization of integrative and conjugative element ICEKp1-associated genomic heterogeneity in a Klebsiella pneumoniae strain isolated from a primary liver abscess," J Bacteriol, vol. 190, pp. 515-26, Jan 2008.
    連結:
  27. [31] Y. T. Chen, H. Y. Chang, Y. C. Lai, C. C. Pan, S. F. Tsai, and H. L. Peng, "Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43," Gene, vol. 337, pp. 189-98, Aug 4 2004.
    連結:
  28. [32] R. K. Aziz, D. Bartels, A. A. Best, M. DeJongh, T. Disz, R. A. Edwards, et al., "The RAST Server: rapid annotations using subsystems technology," BMC Genomics, vol. 9, p. 75, 2008.
    連結:
  29. [33] R. Sorek, Y. Zhu, C. J. Creevey, M. P. Francino, P. Bork, and E. M. Rubin, "Genome-wide experimental determination of barriers to horizontal gene transfer," Science, vol. 318, pp. 1449-52, Nov 30 2007.
    連結:
  30. [34] Y. Zheng, J. Posfai, R. D. Morgan, T. Vincze, and R. J. Roberts, "Using shotgun sequence data to find active restriction enzyme genes," Nucleic Acids Res, vol. 37, p. e1, Jan 2009.
    連結:
  31. [35] A. Kimelman, A. Levy, H. Sberro, S. Kidron, A. Leavitt, G. Amitai, et al., "A vast collection of microbial genes that are toxic to bacteria," Genome Res, vol. 22, pp. 802-9, Apr 2012.
    連結:
  32. [36] D. Gordon, C. Abajian, and P. Green, "Consed: A Graphical Tool for Sequence Finishing," Genome Research, vol. 8, pp. 195-202, 1998.
    連結:
  33. [37] A. C. Darling, B. Mau, F. R. Blattner, and N. T. Perna, "Mauve: multiple alignment of conserved genomic sequence with rearrangements," Genome Res, vol. 14, pp. 1394-403, Jul 2004.
    連結:
  34. [38] T. Carver, N. Thomson, A. Bleasby, M. Berriman, and J. Parkhill, "DNAPlotter: circular and linear interactive genome visualization," Bioinformatics, vol. 25, pp. 119-20, Jan 1 2009.
    連結:
  35. [39] P. A. de Boer, R. E. Crossley, and L. I. Rothfield, "A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli," Cell, vol. 56, pp. 641-9, Feb 24 1989.
    連結:
  36. [40] N. Pavlendova, K. Muchova, and I. Barak, "Expression of Escherichia coli Min system in Bacillus subtilis and its effect on cell division," FEMS Microbiol Lett, vol. 302, pp. 58-68, Jan 2010.
    連結:
  37. [41] E. Bi and J. Lutkenhaus, "Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring," J Bacteriol, vol. 175, pp. 1118-25, Feb 1993.
    連結:
  38. [42] S. B. Korch and T. M. Hill, "Ectopic overexpression of wild-type and mutant hipA genes in Escherichia coli: effects on macromolecular synthesis and persister formation," J Bacteriol, vol. 188, pp. 3826-36, Jun 2006.
    連結:
  39. [43] M. P. Deutscher, C. W. Marlor, and R. Zaniewski, "Ribonuclease T: new exoribonuclease possibly involved in end-turnover of tRNA," Proc Natl Acad Sci U S A, vol. 81, pp. 4290-3, Jul 1984.
    連結:
  40. [44] K. P. Padmanabha and M. P. Deutscher, "RNase T affects Escherichia coli growth and recovery from metabolic stress," J Bacteriol, vol. 173, pp. 1376-81, Feb 1991.
    連結:
  41. [45] G. Chimalakonda, N. Ruiz, S. S. Chng, R. A. Garner, D. Kahne, and T. J. Silhavy, "Lipoprotein LptE is required for the assembly of LptD by the beta-barrel assembly machine in the outer membrane of Escherichia coli," Proc Natl Acad Sci U S A, vol. 108, pp. 2492-7, Feb 8 2011.
    連結:
  42. [46] S. S. Chng, N. Ruiz, G. Chimalakonda, T. J. Silhavy, and D. Kahne, "Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane," Proc Natl Acad Sci U S A, vol. 107, pp. 5363-8, Mar 23 2010.
    連結:
  43. [47] E. Bi and J. Lutkenhaus, "FtsZ regulates frequency of cell division in Escherichia coli," J Bacteriol, vol. 172, pp. 2765-8, May 1990.
    連結:
  44. [48] D. Bramhill and C. M. Thompson, "GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules," Proc Natl Acad Sci U S A, vol. 91, pp. 5813-7, Jun 21 1994.
    連結:
  45. [49] D. S. Weiss, "Bacterial cell division and the septal ring," Mol Microbiol, vol. 54, pp. 588-97, Nov 2004.
    連結:
  46. [50] S. Mizusawa and S. Gottesman, "Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein," Proc Natl Acad Sci U S A, vol. 80, pp. 358-62, Jan 1983.
    連結:
  47. [51] D. Trusca, S. Scott, C. Thompson, and D. Bramhill, "Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein," J Bacteriol, vol. 180, pp. 3946-53, Aug 1998.
    連結:
  48. [52] D. M. Raskin and P. A. de Boer, "Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli," Proc Natl Acad Sci U S A, vol. 96, pp. 4971-6, Apr 27 1999.
    連結:
  49. [2] R. Podschun and U. Ullmann, "Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors," Clin Microbiol Rev, vol. 11, pp. 589-603, Oct 1998.
  50. [27] S. W. Bearden, J. D. Fetherston, and R. D. Perry, "Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis," Infect Immun, vol. 65, pp. 1659-68, May 1997.
  51. [28] C. Buchrieser, M. Prentice, and E. Carniel, "The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement," J Bacteriol, vol. 180, pp. 2321-9, May 1998.
  52. [29] C. Buchrieser, C. Rusniok, L. Frangeul, E. Couve, A. Billault, F. Kunst, et al., "The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains," Infect Immun, vol. 67, pp. 4851-61, Sep 1999.