Translated Titles

Extraction of membrane lipid rafts from gills of euryhaline fish and salinity effects on abundance of ion transporters in branchial lipid rafts



Key Words

脂筏 ; 鈉鉀幫浦 ; V型氫離子幫浦 ; 恆河稻田魚 ; 虱目魚 ; 吳郭魚 ; lipid raft ; Na+, K+-ATPase ; Vacuolar-type H+-ATPase ; Flotillin ; Oryzias dancena ; Chanos chanos ; Oreochromis mossambicius



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

脂筏是由膽固醇 (cholesterol)、鞘磷脂 (sphingomyelin) 與鞘醣脂 (glycosphingolipids) 及部分蛋白質(如Flotillin),在細胞膜所聚集形成的微小區域,其內含的脂質有較長的飽和脂肪酸,使其較不容易被非離子性界面活性劑所溶解。在先前哺乳動物細胞的研究中發現,離子交換主要發生在脂筏區域。然而, 在魚類脂筏的相關研究仍然有限。因此本研究欲建立適用於魚類鰓部脂筏萃取方法,並探討魚類鰓上主動離子運輸蛋白在脂筏上的分布與變化趨勢。在第一部份的研究中發現鈉鉀幫浦(Na+, K+-ATPase, NKA)與V型氫離子幫浦 (Vacuolar-type H+-ATPase, V-HA) 胺基酸序列相比會經過較多的N-Myristoylation和Palmitoylation修飾,因此NKA相較於V-HA極有可能更傾向鑲嵌於脂筏上。此外, 在模式魚種恆河稻田魚的鰓上發現NKA和Flotillin都會受鹽度變化所影響,但仍不清楚NKA和Flotillin之間的關係。而在脂筏萃取方法建立方面,虱目魚及吳郭魚分別使用0.1% Triton X-100以及0.05% Tween 20成功萃取出其鰓上脂筏。在第二部分的研究中發現,虱目魚和吳郭魚鰓組織的NKA都只會表現在脂筏上,且其表現量皆為淡水組顯著高於海水組,然而NKA表現量不會受脂筏含量所影響。另一方面, 虱目魚鰓的V-HA isoform1與isoform2及吳郭魚鰓的V-HA在脂筏與非脂筏部分皆會有表現;淡水虱目魚鰓的非脂筏中的V-HA isoform1和isoform2皆顯著高於的海水組。在吳郭魚鰓組織的V-HA表現情況則可以看出,在淡水或海水組V-HA皆大量表現在非脂筏上,且在淡水組顯著高於海水組。綜合以上結果,本研究已建立虱目魚與吳郭魚鰓組織脂筏萃取方法,並且發現虱目魚與吳郭魚鰓組織的NKA皆表現於細胞膜脂筏上,且其表現量不會受脂筏含量影響; 而虱目魚與吳郭魚鰓組織的V-HA則主要分布在鰓組織細胞膜非脂筏部分,且在非脂筏部分淡、海水組間表現量會有明顯差異; 只有少量V-HA會分布在脂筏部分。

English Abstract

Lipid rafts are microdomains of the plasma membrane enriched in cholesterol, sphingolipids, glycosphingolipids and proteins (e.g. Flotillin). Lipids in the lipid raft are composed of long-chain saturated fatty acids, which make it insoluble in nonionic detergents. In previous studies on mammalian cells, ion exchanges mainly occurred in lipid rafts. However, in fish, there are few studies on lipid rafts. Therefore, the aim of the present study is to establish the extraction method of lipid rafts in fish gills, and to investigate the localization and protein expression of the ion transporters in the lipid rafts of fish gills. In the first part of this study, the amino acid sequence of the Na+, K+-ATPase (NKA) was predicted to possess more N-Myristoylation and Palmitoylation sites than that of the vacuolar-type H+-ATPase (V-HA). Thus, the NKA might have a higher tendency to locate on lipid rafts, compared to the V-HA. Salinity effects on distribution of NKA and Flotillin were found in lipid rafts of medaka gills, but the relations between NKA and Flotillin were not clear yet. Meanwhile, 0.1% Triton X-100 and 0.05% Tween 20 were found to successfully extract lipid rafts from milkfish and tilapia gills, respectively. In the second part of this study, the distribution of NKA was found only in lipid rafts of milkfish and tilapia gills, and distribution of NKA in the freshwater (FW) group was significantly higher than the seawater (SW) group. However, expression of NKA was not affected by lipid raft contents. On the other hand, V-HA isoform1 and isoform2 of milkfish gills as well as V-HA of tilapia gills appeared in the lipid rafts and non-lipid rafts of cell membrane. Distribution of V-HA isoform1 and isoform2 in non-lipid rafts was significantly higher of the FW milkfish gills than the SW group. Most V-HA distribution was found in non-lipid rafts of tilapia gills, significantly higher in the FW group than the SW group. In summary, this study has established the extraction method of lipid rafts on milkfish and tilapia gills. The NKA of milkfish and tilapia gills was located only in lipid rafts of cell membrane, and its expression was not affected by contents of the lipid rafts. V-HA was mainly localized in non-lipid rafts of both milkfish and tilapia gills with significant differences in expression between the SW and FW groups.

Topic Category 生命科學院 > 生命科學系所
生物農學 > 生物科學
  1. Armesto, P., Infante, C., Cousin, X., Ponce, M. & Manchado, M. (2015). Molecular and functional characterization of seven Na+/K+-ATPase β subunit paralogs in Senegalese sole (Solea senegalensis Kaup, 1858). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 182, 14-26.
  2. Banning, A., Tomasovic, A. & Tikkanen, R. (2011). Functional aspects of membrane association of reggie/flotillin proteins. Current Protein and Peptide Science, 12, 725-735.
  3. Beyenbach, K. W. & Wieczorek, H. (2006). The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. Journal of Experimental Biology, 209, 577-589.
  4. Bickel, P. E., Scherer, P. E., Schnitzer, J. E., Oh, P., Lisanti, M. P. & Lodish, H. F. (1997). Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. Journal of Biological Chemistry, 272, 13793-13802.
  5. Blanco, G. & Mercer, R. W. (1998). Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. American Journal of Physiology-Renal Physiology, 275, F633-F650.
  6. Breton, S., Wiederhold, T., Marshansky, V., Nsumu, N. N., Ramesh, V. & Brown, D. (2000). The B1 subunit of the H+ ATPase is a PDZ-domain binding protein: colocalization with NHE-RF in renal B-intercalated cells. Journal of Biological Chemistry, 275, 18219-18224.
  7. Bretscher, M. S. & Munro, S. (1993). Cholesterol and the Golgi apparatus. Science, 261, 1280-1282.
  8. Brogden, G., Propsting, M., Adamek, M., Naim, H. Y. & Steinhagen, D. (2014). Isolation and analysis of membrane lipids and lipid rafts in common carp (Cyprinus carpio L.). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 169, 9-15.
  9. Brown, D. A. & Rose, J. K. (1992). Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 68, 533-544.
  10. Brown, D. & Breton, S. (1996). Mitochondria-rich, proton-secreting epithelial cells. Journal of Experimental Biology, 199, 2345-2358.
  11. Brown, D. & London, E. (1998). Functions of lipid rafts in biological membranes. Annual review of cell and developmental biology, 14, 111-136.
  12. Chang, I. C. & Hwang, P. P. (2004). Cl− uptake mechanism in freshwater-adapted tilapia (Oreochromis mossambicus). Physiological and Biochemical Zoology, 77, 406-414.
  13. Claiborne, J. B., Edwards, S. L. & Morrison‐Shetlar, A. I. (2002). Acid–base regulation in fishes: cellular and molecular mechanisms. Journal of Experimental Zoology, 293, 302-319.
  14. Dalskov, S. M., Immerdal, L., Niels-Christiansen, L. L., Hansen, G. H., Schousboe, A. & Danielsen, E. M. (2005). Lipid raft localization of GABAA receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells. Neurochemistry international, 46, 489-499.
  15. Drevot, P., Langlet, C., Guo, X. J., Bernard, A. M., Colard, O., Chauvin, J. P. & He, H. T. (2002). TCR signal initiation machinery is pre‐assembled and activated in a subset of membrane rafts. The EMBO journal, 21, 1899-1908.
  16. Eckert, G. P., Igbavboa, U., Müller, W. E. & Wood, W. G. (2003). Lipid rafts of purified mouse brain synaptosomes prepared with or without detergent reveal different lipid and protein domains. Brain research, 962, 144-150.
  17. Evans, D. H. (2008). Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295, R704-R713.
  18. Evans, D. H., Piermarini, P. M. & Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological reviews, 85, 97-177.
  19. Farazi, T. A., Waksman, G. & Gordon, J. I. (2001). The biology and enzymology of proteinn-myristoylation. Journal of Biological Chemistry, 276, 39501-39504.
  20. Fenwick, J., Bonga, S. W. & Flik, G. (1999). In vivo bafilomycin-sensitive Na+ uptake in young freshwater fish. Journal of Experimental Biology, 202, 3659-3666.
  21. Ferraris, R. P., Almendras, J. M. & Jazul, A. P. (1988). Changes in plasma osmolality and chloride concentration during abrupt transfer of milkfish (Chanos chanos) from seawater to different test salinities. Aquaculture, 70, 145-157.
  22. Harvey, W. R., Maddrell, S. H., Telfer, W. H. & Wieczorek, H. (1998). H+ V-ATPases energize animal plasma membranes for secretion and absorption of ions and fluids. American zoologist, 38, 426-441.
  23. Heisler, N. (1984). Acid-base regulation in fishes. Fish physiology, 10, 315-401.
  24. Hiroi, J., Kaneko, T., Uchida, K., Hasegawa, S. & Tanaka, M. (1998). Immunolocalization of vacuolar-type H+-ATPase in the yolk-sac membrane of tilapia (Oreochromis mossambicus) larvae. Zoological science, 15, 447-453.
  25. Hiroi, J., McCormick, S. D., Ohtani-Kaneko, R. & Kaneko, T. (2005). Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and CFTR anion channel. Journal of Experimental Biology, 208, 2023-2036.
  26. Hirose, S., Kaneko, T., Naito, N. & Takei, Y. (2003). Molecular biology of major components of chloride cells. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 136, 593-620.
  27. Hwang, P. P., Fang, M. J., Tsai, C. J., Huang, S. T. & Chen, S. T.(1998). Expression of mRNA and protein of Na+-K+-ATPase α subunit in gills of tilapia (Oreochromis mossambicus). Fish Physiology and Biochemistry, 18, 363-373.
  28. Hwang, P. P. (1987). Tolerance and ultrastructural responses of branchial chloride cells to salinity changes in the euryhaline teleost Oreochromis mossambicus. Marine Biology, 94, 643-649.
  29. Hwang, P. P. & Lee, T. H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 148, 479-497.
  30. Inoue, K. & Takei, Y. (2002). Diverse adaptability in Oryzias species to high environmental salinity. Zoological Science, 19, 727-734.
  31. Inoue, K. & Takei, Y. (2003). Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 136, 635-645.
  32. Kang, C. K., Tsai, S. C., Lee, T. H. & Hwang, P. P. (2008). Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151, 566-575.
  33. Katoh, F., Hyodo, S. & Kaneko, T. (2003). Vacuolar-type proton pump in the basolateral plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killifish Fundulus heteroclitus, adapted to a low ion environment. Journal of Experimental Biology, 206, 793-803.
  34. Kelly, S. P., Chow, I. N. & Woo, N. Y. (1999). Haloplasticity of black seabream (Mylio macrocephalus): hypersaline to freshwater acclimation. Journal of Experimental Zoology, 283, 226-241.
  35. Kumar, A., Xiao, Y. P., Laipis, P. J., Fletcher, B. S. & Frost, S. C. (2004). Glucose deprivation enhances targeting of GLUT1 to lipid rafts in 3T3-L1 adipocytes. American Journal of Physiology-Endocrinology and Metabolism, 286, E568-E576.
  36. Lafourcade, C., Sobo, K., Kieffer-Jaquinod, S., Garin, J. & Van Der Goot, F. G. (2008). Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PloS ONE, 3, e2758.
  37. Lee, T., Hwang, P., Shieh, Y. & Lin, C. (2000). The relationship between deep-hole'mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus. Fish Physiology and Biochemistry, 23, 133-140.
  38. Legler, D. F., Micheau, O., Doucey, M. A., Tschopp, J. & Bron, C. (2003). Recruitment of TNF receptor 1 to lipid rafts is essential for TNFα-mediated NF-κB activation. Immunity, 18, 655-664.
  39. Levental, I., Lingwood, D., Grzybek, M., Coskun, Ü. & Simons, K. (2010). Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proceedings of the National Academy of Sciences, 107, 22050-22054.
  40. Lin, C. H., Huang, C. L., Yang, C. H., Lee, T. H. & Hwang, P. P. (2004). Time‐course changes in the expression of Na, K‐ATPase and the morphometry of mitochondrion‐rich cells in gills of euryhaline tilapia (Oreochromis mossambicus) during freshwater acclimation. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 301, 85-96.
  41. Lin, H., Pfeiffer, D., Vogl, A., Pan, J. & Randall, D. (1994). Immunolocalization of H+-ATPase in the gill epithelia of rainbow trout. Journal of Experimental Biology, 195, 169-183.
  42. Lin, H. & Randall, D. J. (1993). H+-ATPase activity in crude homogenates of fish gill tissue: inhibitor sensitivity and environmental and hormonal regulation. Journal of Experimental Biology, 180, 163-174.
  43. Lin, H. & Randall, D. J. (1995). Proton pumps in fish gills. In : Wood, C. M. & Shuttleworth, T. J. (Eds.) Cellular and molecular approaches to fish ionic regulation, Academic, San Diego, pp. 229-255.
  44. Lin, L. Y., Horng, J. L., Kunkel, J. G. & Hwang, P. P. (2006a). Proton pump-rich cell secretes acid in skin of zebrafish larvae. American Journal of Physiology-Cell Physiology, 290, C371-C378.
  45. Lin, Y. M., Chen, C. N. & Lee, T. H. (2003). The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 135, 489-497.
  46. Lin, Y. M., Chen, C. N., Yoshinaga, T., Tsai, S. C., Shen, I. D.& Lee, T. H. (2006b). Short-term effects of hyposmotic shock on Na+/K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143, 406-415.
  47. Lingwood, D. & Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science, 327, 46-50.
  48. Lingwood, D., Harauz, G. & Ballantyne, J. S. (2005). Regulation of fish gill Na+-K+-ATPase by selective sulfatide-enriched raft partitioning during seawater adaptation. Journal of Biological Chemistry, 280, 36545-36550.
  49. Liu, J., DeYoung, S. M., Zhang, M., Dold, L. H. & Saltiel, A. R. (2005). The stomatin/prohibitin/flotillin/HflK/C domain of flotillin-1 contains distinct sequences that direct plasma membrane localization and protein interactions in 3T3-L1 adipocytes. Journal of Biological Chemistry, 280, 16125-16134.
  50. MacKenzie, W. & Perry, S. (1997). The effects of hypercapnia on branchial and renal calcium fluxes in the rainbow trout (Oncorhynchus mykiss). Journal of Comparative Physiology B, 167, 52-60.
  51. Madore, N., Smith, K. L., Graham, C. H., Jen, A., Brady, K., Hall, S. & Morris, R. (1999). Functionally different GPI proteins are organized in different domains on the neuronal surface. The EMBO journal, 18, 6917-6926.
  52. Maekawa, S., Morii, H., Kumanogoh, H., Sano, M., Naruse, Y., Sokawa, Y. & Mori, N. (2001). Localization of neuronal growth-associated, microtubule-destabilizing factor SCG10 in brain-derived raft membrane microdomains. The Journal of Biochemistry, 129, 691-697.
  53. Mancera, J. M., Carrión, R. L. & del Pilar Martin del Rio, M. (2002). Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream (Sparus aurata L.). General and comparative endocrinology, 129, 95-103.
  54. Marshall, W. S. (2002). Na+, Cl−, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 293, 264-283.
  55. Marshall, W. S. & Bryson, S. E. (1998). Transport mechanisms of seawater teleost chloride cells: an inclusive model of a multifunctional cell. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 119, 97-106.
  56. Marshall, W. S. & Singer, T. D. (2002). Cystic fibrosis transmembrane conductance regulator in teleost fish. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1566, 16-27.
  57. Morgan, J. D., Sakamoto, T., Grau, E. G. & Iwama, G. K. (1997). Physiological and respiratory responses of the Mozambique tilapia (Oreochromis mossambicus) to salinity acclimation. Comparative Biochemistry and Physiology Part A: Physiology, 117, 391-398.
  58. Neumann-Giesen, C., Falkenbach, B., Beicht, P., Claasen, S., Lüers, G., Stuermer, C. A. & Tikkanen, R. (2004). Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochemical Journal, 378, 509-518.
  59. Perry, S. & Fryer, J. (1997). Proton pumps in the fish gill and kidney. Fish Physiology and Biochemistry, 17, 363-369.
  60. Perry, S., Shahsavarani, A., Georgalis, T., Bayaa, M., Furimsky, M. & Thomas, S. (2003). Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: Their role in ionic and acid-base regulation. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 300, 53-62.
  61. Pestov, N. B., Zhao, H., Basrur, V. & Modyanov, N. N. (2011). Isolation and characterization of BetaM protein encoded by ATP1B4-a unique member of the Na, K-ATPase β-subunit gene family. Biochemical and biophysical research communications, 412, 543-548.
  62. Piermarini, P. M. & Evans, D. H. (2001). Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): effects of salinity and relation to Na+/K+-ATPase. Journal of Experimental Biology, 204, 3251-3259.
  63. Puopolo, K., Sczekan, M., Magner, R. & Forgac, M. (1992). The 40-kDa subunit enhances but is not required for activity of the coated vesicle proton pump. Journal of Biological Chemistry, 267, 5171-5176.
  64. Radeva, G. & Sharom, F. J. (2004). Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells. Biochemical Journal, 380, 219-230.
  65. Roberts, T. R. (1998). Systematic observations on tropical Asian medakas or ricefishes of the genus Oryzias, with descriptions of four new species. Ichthyological Research, 45, 213-224.
  66. Röper, K., Corbeil, D. & Huttner, W. B. (2000). Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nature Cell Biology, 2, 582- 592.
  67. Scheiner-Bobis, G. (2002). The sodium pump. European Journal of Biochemistry, 269, 2424-2433.
  68. Schroeder, R. J., Ahmed, S. N., Zhu, Y., London, E. & Brown, D. A. (1998). Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. Journal of Biological Chemistry, 273, 1150-1157.
  69. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A. & Simons, K. (2003). Resistance of cell membranes to different detergents. Proceedings of the National Academy of Sciences, 100, 5795-5800.
  70. Schulte, T., Paschke, K. A., Laessing, U., Lottspeich, F. & Stuermer, C. (1997). Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development, 124, 577-587.
  71. Scott, G. R., Rogers, J. T., Richards, J. G., Wood, C. M. & Schulte, P. M. (2004). Intraspecific divergence of ionoregulatory physiology in the euryhaline teleost Fundulus heteroclitus: possible mechanisms of freshwater adaptation. Journal of Experimental Biology, 207, 3399-3410.
  72. Shull, G. E., Greeb, J. & Lingrel, J. B. (1986). Molecular cloning of three distinct forms of the Na+, K+-ATPase alpha subunit from rat brain. Biochemistry, 25, 8125-8132.
  73. Simons, K. & Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387, 569-572.
  74. Simons, K. & Ikonen, E. (2000). How cells handle cholesterol. Science, 290, 1721-1726.
  75. Steinmetz, P. (1986). Cellular organization of urinary acidification. American Journal of Physiology-Renal Physiology, 251, F173-F187.
  76. Stetson, D. L. & Steinmetz, P. R. (1986). Correlation between apical intramembrane particles and H+ secretion rates during CO2 stimulation in turtle bladder. Pflügers Archiv, 407, S80-S84.
  77. Sullivan, G., Fryer, J. & Perry, S. (1995). Immunolocalization of proton pumps (H+-ATPase) in pavement cells of rainbow trout gill. Journal of Experimental Biology, 198, 2619-2629.
  78. Swanson, C. (1998). Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos). Journal of Experimental Biology, 201, 3355-3366.
  79. Tang, C. H. & Lee, T. H. (2010). Ion-deficient environment induces the expression of basolateral chloride channel, ClC-3-like protein, in gill mitochondrion-rich cells for chloride uptake of the tilapia Oreochromis mossambicus. Physiological and Biochemical Zoology, 84, 54-67.
  80. Tang, C. H., Chiu, Y. H., Tsai, S. C. & Lee, T. H. (2009). Relative changes in the abundance of branchial Na+/K+‐ATPase α‐isoform‐like proteins in marine euryhaline milkfish (Chanos chanos) acclimated to environments of different salinities. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 311, 521-529.
  81. Tillman, T. S. & Cascio, M. (2003). Effects of membrane lipids on ion channel structure and function. Cell biochemistry and biophysics, 38, 161-190.
  82. Truchot, J. P. (2012). Comparative aspects of extracellular acid-base balance (Vol. 20): Springer Science & Business Media.
  83. Tseng, Y. C. & Hwang, P. P. (2008). Some insights into energy metabolism for osmoregulation in fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 148, 419-429.
  84. Uchida, K., Kaneko, T., Miyazaki, H., Hasegawa, S. & Hirano, T. (2000). Excellent salinity tolerance of Mozambique tilapia (Oreochromis mossambicus): elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zoological science, 17, 149-160.
  85. van Hille, B., Richener, H., Schmid, P., Puettner, I., Green, J. & Bilbe, G. (1994). Heterogeneity of vacuolar H+-ATPase: differential expression of two human subunit B isoforms. Biochemical Journal, 303, 191-198.
  86. Welker, P., Geist, B., Fruhauf, J. H., Salanova, M., Groneberg, D. A., Krause, E. & Bachmann, S. (2007). Role of lipid rafts in membrane delivery of renal epithelial Na+-K+-ATPase, thick ascending limb. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292, R1328-R1337.
  87. Xie, Y., Zheng, Y., Li, H., Luo, X., He, Z., Cao, S., & Ren, J. (2016). GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites. Scientific reports, 6, 28249.
  88. Yoshinaka, K., Kumanogoh, H., Nakamura, S. & Maekawa, S. (2004). Identification of V-ATPase as a major component in the raft fraction prepared from the synaptic plasma membrane and the synaptic vesicle of rat brain. Neuroscience letters, 363, 168-172.
  89. 邱英哲,李榮涼,林明男。(2004)。2-phenoxyethanol對虱目魚苗的麻醉效果。水試專訊,第8期,13-15。