Title

氧化錳/碳黑複合材料之製備應用於超級電容器

Translated Titles

The preparation of manganese oxide/carbon black composites application for supercapacitors

DOI

10.6845/NCHU.2015.00253

Authors

游智堯

Key Words

超級電容 ; 錳系氧化物 ; 表面改質碳黑 ; 比電容 ; supercapacitors (SCs) ; manganese oxide (MO) ; surface modified carbon black (SMCB) ; specific capacitance.

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

顏秀崗

Content Language

英文

Chinese Abstract

超級電容是一種利用高比表面積快速將電力儲存的裝置,應用於車用電子、大型儲能建物以及太空設備上,而錳氧化物-碳材(MO-C)二元複材系為目前常被用來作為超級電容電極的研究。但由於錳系金屬氧化物具有較差的電子導電度與低比表面積, 因此在本研究企圖將碳黑(CB)置於富氧環境中使表面改質(SM)而富含OH- 官能基, 再將錳系金屬氧化物直接沉積析出於碳黑(CB), 企圖上強化錳系金屬氧化物與碳黑之間的鍵結並增加其導電度與或比表面積。 配製三種不同錳離子莫爾濃度再混入固定重量表面改質碳黑(SMCB)形成代號為MO/SMCB 0.01:1、0.03:1、0.05:1三種複合材料,部分複材並經250-4000C-2小時熱處理,透過X-ray繞射(XRD)、場發射掃描式電子顯微鏡(FE-SEM)、高解析度穿透式電子顯微鏡即時傅立葉轉換 (HR-TEM Live-FFT)、X-ray 光電子能譜 (XPS)、感應耦合電漿質譜儀 (ICP-MS)、傅立葉轉換紅外線光譜儀 (FTIR) 進行材料分析, 並以循環伏安法 (CV)、充放電法 (GCD)與電化學阻抗頻譜 (EIS)分析測試電化學性能。XRD顯示剛製備之MO/SMCB 0.01:1與0.03:1之複材係MnO2之結構, 經4000C退火2小時候轉換成Mn2O3晶體結構, 但FTIR 顯示前後兩者均富含OH基, 而且XPS之化學狀態分析也顯示O 1s 可分為Mn-O-Mn及Mn-O-H兩種化學鍵結狀態,經最後TGA之分析推論應修正為非化學計量之MnxO2-x(OH)2x與Mn2O3-x(OH)2x, HRTEM微結構之觀察顯示片狀MnO2均勻混入SMCB中,退火後則將SMCB包覆形成核殼 (core-shell) 結構, 其薄膜厚約15~30 nm, 使其比電容由純SMCB之52 F/g 提升至MO/SMCB 0.03:1之200 F/g (未退火)與400 F/g (退火後)。相較下, 0.05:1則無論退火前後均為方形Mn3O4之晶體結構, 也能均勻散佈於SMCB中, 比電容有218 F/g, 但退火後降至178 F/g。此創新MO/SMCB 複材之製備己展現極優之比電容,將有利於未來超級電容之發展。

English Abstract

The supercapacitor is a device used to store the charge fast by high specific surface area, applied to the electricity of vehicle, great energy-stored building and facilities in space. The manganese oxide-carbon (MO-C) binary composites are currently investigated as electrodes of supercapacitors. However, manganese oxides have poor electric conductivity and low specific surface area. Therefore in this study, we attempted to modify the surface of carbon black (CB) to generate more OH- radicals for the precipitation of manganese oxide directly on it to strengthen the bonding between them and improve the conductivity and/or the specific area. Three kinds of molar Mn2+ concentrated solutions were mixed with the surface modified carbon black (SMCB) of a fixed weight to form MO/SMCB 0.01:1, 0.03:1 and 0.05:1 composites, respectively. Some composites were finally annealed at 2500C~4000C for 2 h. The features of these composites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy-live fast Fourier transform (HR TEM-Live FFT), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-mass spectrometry (ICP-MS), and Fourier transform infrared (FTIR), while the electrochemical performance by cyclic voltammetry (CV), Galvanostat charge-discharge (GCD) and Electrochemical impedance spectroscopy (EIS) tests. XRD patterns indicate that the as-prepared MO/SMCB 0.01:1 and 0.03:1 composites are MnO2 and transformed into Mn2O3 after annealed at 4000C for 2 hr. However, FTIR results indicate that they both are full of OH bonds. Also, the analyses of XPS indicate that the chemical states of O 1s are composed of Mn-O-Mn and Mn-O-H chemical bonds. Finally, through the analysis of TGA, non-stoichiometric MnxO2-x(OH)2x, Mn2O3-x(OH)2x and Mn3O4-x(OH)2x are speculated. HRTEM observations show that MnO2 flakes are mixed in the SMCB matrix uniformly, MnO2 films after annealed cover SMCB to form the core-shell structure with the film thickness about 15~30 nm. The specific capacitance increases from 52 F/g for pure SMCB to 200 F/g for un-annealed MO/SMCB 0.03:1 and 400 F/g after annealed. For MO/SMCB 0.05:1, no phase transformation occurs and Mn3O4 cubes are uniformly dispersed in SMCB, revealing the specific capacitance of 218 before and 178 F/g after annealed. These creative MO/SMCB composites have revealed the outstanding specific capacitance, which is helpful for developing supercapacitors in the future.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. 3. R. F. Service, Science, 2006, 313, 902-902.
    連結:
  2. 5. A. Burke, J.Power Sources, 2000, 91, 37-50.
    連結:
  3. 6. A. Burke, Int .J. Energ. Res, 2010, 34, 133-151.
    連結:
  4. 8. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 2006, 157, 11-27.
    連結:
  5. 9. E., Frackowiak, Phys. Chem. Chem. Phys, 2007, 9, 1774-1785.
    連結:
  6. 11. L. H. Su, X. G. Zhang, C. H. Mi, B. Gao, and Y. Liu, Phys. Chem. Chem.Phys, 2009, 11, 2195-2202.
    連結:
  7. 13. J. H. Wu, H. J. Yu, L. Q. Fan, G. G. Luo, J. M. Lin and M. L. Huang, J. Mater. Chem, 2012, 22, 19025-19030.
    連結:
  8. 19. Sukeun Park and Seok Kim, Electrochimica Acta 2013, 89, 516-522.
    連結:
  9. 21. Ki-Seok Kim and Park-Jin Soo, Bull. Korean Chem. Soc. 2013, Vol. 34, No. 8 2343.
    連結:
  10. 22. Thierry Brousse, Mathieu Toupin, Romain Dugas, Laurence Athouël, Olivier Crosnier, and Daniel Bélanger, Journal of The Electrochemical Society, 2006, 153 ,12, 2171-2180.
    連結:
  11. 23. Lee Jeong Woo, S. Hall Anthony, Jong-Duk Kim, and E. Mallouk Thomas, Chem. Mater. 2012, 24, 1158-1164.
    連結:
  12. 26. Wei Zeng, Guanhua Zhang, Sucheng Hou, Taihong Wang and Huigao Duan, Electrochimica Acta 2015, 151, 510-516.
    連結:
  13. 28. M. L. Huang, C. D. Gu, X. Ge, X. L. Wang and J. P. Tu, Journal of Power Sources 2014, 259, 98-105.
    連結:
  14. 31. I. H., Kim and K. B, Kim, J. Electrochem. Soc. 2006, 153, 383-389.
    連結:
  15. 34. C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, Nano Lett. 2006, 6, 2690-2695.
    連結:
  16. 35. J. P. Zheng and T. R. Jow, J. Power Sources 1996, 62, 155-159.
    連結:
  17. 37. C. C. Hu and Y. H. Huang, Electrochim. Acta 2001, 46, 3431-3444.
    連結:
  18. 38. Y. U. Jeong and A. Manthiram, J. Electrochem. Soc. 2001, 148, 189-193.
    連結:
  19. 42. C. Zhang, H. Zhou, X. Yu, D. Shan, T. Ye, Z. Huang, et al, RSC Adv. 2014, 4, 11197-11205.
    連結:
  20. 43. H. Y. Lee and J. B. Goodenough, J. Solid State Chem. 1999, 144, 220-223.
    連結:
  21. 45. M. Toupin, T. Brousse and D. Belanger, Chem. Mater. 2004, 16, 3184-3190.
    連結:
  22. 48. R. B. King, Encyclopedia of inorganic chemistry, Wiley, Chichester, New York, 1994.
    連結:
  23. 50. R. T. Downs and M. Hall-Wallace, Am. Mineral., 2003, 88, 4.
    連結:
  24. 51. P. Villars and L. D. Calvert, Pearson’s handbook of crystallographic data for intermetallic phases, ASM International, Materials Park, OH, 2nd edn, 1991.
    連結:
  25. 53. W. H. Baur, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst.Chem, 1976, 32, 2200-2204.
    連結:
  26. 56. P. M. De Wolf, Acta Crystallogr, 1959, 12, 5.
    連結:
  27. 58. E. Preisler, J. Appl. Electrochem, 1976, 6, 301-310.
    連結:
  28. 60. Y. S. Chen and C. C. Hu, Electrochem. Solid-State Lett, 2003, 6, 210-213.
    連結:
  29. 63. K. Q. Ding, J. Chin. Chem. Soc. (Taipei), 2008, 55, 543-549.
    連結:
  30. 66. T. Brousse and D. Belanger, Electrochem. Solid-State Lett, 2003, 6, 244-248.
    連結:
  31. 67. H. Kim and B. N. Popov, J. Electrochem. Soc., 2003, 150, 56-62.
    連結:
  32. 71. G. X. Wang, B. L. Zhang, Z. L. Yu and M. Z. Qu, Solid State Ionics, 2005, 176, 1169-1174.
    連結:
  33. 73. V. Subramanian, H. W. Zhu and B. Q. Wei, Electrochem. Commun., 2006, 8, 827-832.
    連結:
  34. 75. C. Y. Lee, H. M. Tsai, H. J. Chuang, S. Y. Li, P. Lin and T. Y. Tseng, J. Electrochem. Soc., 2005, 152, 716-720.
    連結:
  35. 79. Y. Lei, C. Fournier, J. L. Pascal and F. Favier, Microporous Mesoporous Mater., 2008, 110, 167-176.
    連結:
  36. 80. J. Yan, Z. J. Fan, T. Wei, Z. W. Qie, S. S. Wang and M. L. Zhang, Mater. Sci. Eng., B, 2008, 151, 174-178.
    連結:
  37. 81. J. Yan, Z. J. Fan, T. Wei, J. Cheng, B. Shao, K. Wang, L. P. Song and M. L. Zhang, J. Power Sources, 2009, 194, 1202-1207.
    連結:
  38. 83. Guoping Xiong, K.P.S.S. Hembram, R.G. Reifenberger, S. Fisher Timothy, J Power Sources, 2013, 194, 254-259.
    連結:
  39. 84. Xingyan Wang, Liu Li, Xianyou Wang, Lanhua Yi, Chuanyue Hu, Xiaoyan Zhang, Materials Science and Engineering B, 2011, 176, 1232-1238.
    連結:
  40. 85. Bei Wang, Jinsoo Park, Chengyin Wang, Hyojun Ahn, Guoxiu Wang, Electrochimica Acta 2010, 55, 6812-6817.
    連結:
  41. 98. Masaya Chigane and Masami Ishikawa, J. Chem. Soc., Faraday Trans, 1998, 94, 3665-3670.
    連結:
  42. 102. Li Li Zhang, Tianxin Wei, Wenjuan Wang, Zhao X.S., Microporous and Mesoporous Materials, 2009, 123, 260-267.
    連結:
  43. 108. C. C. Hu, and C. C. Wang, Journal of The Electrochemical Society 2003, 150 (8), 1079-1084.
    連結:
  44. 109. Jeong Woo Lee, S. Hall Anthony, Jong-Duk Kim, and E. Mallouk Thomas, Chem. Mater. 2012, 24, 1158-1164.
    連結:
  45. 112. Yong Zhao, Yuena Meng and Peng Jiang, Journal of Power Sources 2014, 259,219-226.
    連結:
  46. 115. M. L. Huang, C.D. Gu, X. Ge, X. L. Wang and J. P. Tu, Journal of Power Sources 2014, 259, 98-105.
    連結:
  47. 117. Hongjuan Wang, Cheng Peng, Jiadao Zheng, Feng Peng, Hao Yu, Materials Research Bulletin, 2013,48, 3389-3393.
    連結:
  48. 118. Jun Yan, Zhuangjun Fan, Tong Wei, Cheng Jie, Shao Bo, Kai Wang, Liping Song and Milin Zhang, Journal of Power Sources 2009, 194, 1202-1207.
    連結:
  49. 120. Hongjuan Wang, Cheng Peng, Jiadao Zheng, Feng Peng, Hao Yu, Materials Research Bulletin, 2013,48, 3389-3393.
    連結:
  50. 125. Park-Kyeong Won, J. Mater. Chem. A, 2014, 2, 4292.
    連結:
  51. 126. Jeong Woo Lee, S. Hall Anthony, Jong-Duk Kim, and E. Mallouk Thomas, Chem. Mater. 2012, 24, 1158-1164.
    連結:
  52. 127. Ki-Seok Kim and Soo-Jin Park, Bull. Korean Chem. Soc. 2013, 34, 8 2343.
    連結:
  53. 1. Weifeng Wei, Xinwei Cui, Weixing Chen and G. Ivey Douglas, Chem. Soc. Rev., 2011, 40, 1697-1721.
  54. 2. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Plenum Press, New York, 1999.
  55. 4. B. E. Conway, New York, NY: Kluwer Academic Publishers, Plenum Press,1999.
  56. 7. E. Frackowiak and F. Beguin, Carbon N.Y, 2001, 39, 937-950.
  57. 10. Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes and S. Dai. Adv.Mater, 2011, 23, 4828-4850.
  58. 12. S. Roldán, M. Granda, R. Menéndez, R. Santamaría and C, Blanco, J. Phys. Chem.C, 2011, 115, 17606-17611.
  59. 14. W. Chen, R. B., Rakhi and H. N, Alshareef, Nanoscale, 2013, 5, 4134-4138.
  60. 15. S. T., Senthilkumar, R. K., Selvan, Y. S., Lee and J. S, Melo, J. Mater. Chem.A 2013, 1, 1086-1095.
  61. 16. Cuimei Zhao and Weitao Zheng, Energy Res, 2015, 3, 23.
  62. 17. Sheng Chen, Junwu Zhu, Xiaodong Wu, Qiaofeng Han, and Xin Wang, ACS Nano. 2010, VOl. , 4, NO. 5.
  63. 18. Park-Kyeong Won, Journal of Materials Chemistry A 2014, 2, 4292-4298.
  64. 20. Qing Xia, Hailei Zhao, Zhihong Du, Jie Wang, Tianhou Zhang, Jing Wang, Pengpeng Lv, Journal of Power Sources 2013, 226, 107-111.
  65. 24. Hyun-Woo Shim, Ah-Hyeon Lim, Jae-Chan Kim, Eunjin Jang, Seo-Deok Seung, Gwang-Hee Lee, T. Doohun Kim and Dong-Wan Kim, Science reports. 2013, 3: 2325.
  66. 25. M. Sathiya, A. S. Prakash, K. Ramesha, J-M. Tarascon, and A. K. Shukla, J. Am. Chem. Soc. 2011, 133, 16291-16299.
  67. 27. Kai Zhou, Weijia Zhou, Xiaojun Liu, Yuanhua Sang, Shaozheng Ji, Wei Li, Jia Lu, Ligui Li, Wenhan Niu, Hong Liu and Shaowei Chen, Nano Energy 2015, 12, 510-520.
  68. 29. K. Sakiyama, S. Onishi, K. Ishihara, K. Orita, T. Kijiyama, N. Hosoda, et al, J. Electrochem. Soc.1993, 140, 834-839.
  69. 30. Q. X. Song, S. G. Wu, X. D. Cho, J. H. Foltyn, S. R. Findikoglu, A. T. et al, Appl. Phys.Lett. 1996, 68, 1069-1071.
  70. 32. H. Lee, M. S. Cho, I. H. Kim, J. D. Nam and Y. Lee, Synth. Met. 2010, 120, 1055-1059.
  71. 33. V. V. Panic, A. B. Dekanski and R. M. Stevanovic, Journal of Power Sources 2010, 195, 3969-3976.
  72. 36. Q. L. Fang, D. A. Evans, S. L. Roberson and J. P Zheng, J. Electrochem. Soc. 2001, 148, 833-837.
  73. 39. Y. F. Ke, D. S. Tsai and Y. S Huang, J. Mater. Chem. 2005, 15, 2122-2127.
  74. 40. D. Zhao, X. Guo, Y. Gao, and F. Gao, ACS Appl. Mater. Interfaces 2012, 4, 5583-5589.
  75. 41. A. Sellam, and S. A. Hashmi, ACS Appl. Mater. Interfaces 2013, 5, 3875-3883.
  76. 44. H. Y. Lee, V. Manivannan and J. B. Goodenough, C. R. Acad. Sci., Ser. IIc: Chim. 1999, 2, 565-577.
  77. 46. S. C. Pang, M. A. Anderson and T. W. Chapman, J. Electrochem. Soc. 2000, 147, 444-450.
  78. 47. D. R. Lide, Handbook of Chemistry and Physics, CRC Press, 72nd edn, 1991-1992.
  79. 49. C. N. R. Rao and B. Raveau, Transition metal oxides: structure, properties, and synthesis of ceramic oxides, Wiley-VCH, New York, 2nd edn, 1998.
  80. 52. J. B. Fernandes, B. D. Desai and V. N. K. Dalal, J. Power Sources, 1985, 15, 209-237.
  81. 54. S. Turner and P. R. Buseck, Science, 1979, 203, 456-458.
  82. 55. M. A. Malati, Chem. Ind., 1971, 17, 446-452.
  83. 57. F. Freund, E. Konen and E. Preisler, Manganese Dioxide Symposium, Cleveland, 1975.
  84. 59. P. M. De Wolff, J. W. Visser, R. Giovanoli and R. Briltsch, Chimia, 1978, 32, 3.
  85. 61. K. R. Prasad and N. Miura, Electrochem. Commun, 2004, 6, 1004-1008.
  86. 62. M. Nakayama, A. Tanaka, S. Konishi and K. Ogura, J. Mater. Res., 2004, 19, 1509-1515.
  87. 64. J. G. Wen, X. Y. Ruan and Z. T. Zhou, J. Phys. Chem. Solids,2009, 70, 816-820.
  88. 65. M. Nakayama, A. Tanaka, Y. Sato, T. Tonosaki and K. Ogura, Langmuir, 2005, 21, 5907-5913.
  89. 68. Y. Li and H. Q. Xie, Ionics, 2010, 16, 21-25.
  90. 69. X. Pang, Z. Q. Ma and L. Zuo, Acta Phys. Chim. Sin., 2009, 25,2433-2437.
  91. 70. A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud and J. W. Long, Nano Lett., 2007, 7, 281-286.
  92. 72. Z. Fan, J. H. Chen, M. Y. Wang, K. Z. Cui, H. H. Zhou and W. Kuang, Diamond Relat. Mater., 2006, 15, 1478-1483.
  93. 74. E. Raymundo-Pinero, V. Khomenko, E. Frackowiak and F. Beguin, J. Electrochem. Soc., 2005, 152, 229-235.
  94. 76. V. Subramanian, H. W. Zhu, R. Vajtai, P. M. Ajayan and B. Q. Wei, J. Phys. Chem. B, 2005, 109, 20207-20214.
  95. 77. Yiting Peng, Zheng Chen, Jing Wen, Qiangfeng Xia, Ding Weng, Shiyu He, Hongbin Geng and Yunfeng Lu, Nano Res. 2011, 4(2):216-225.
  96. 78. J. W. Long, M. B. Sassin, A. E. Fischer, D. R. Rolison, A. N. Mansour, V. S. Johnson, P. E. Stallworth and S. G. Greenbaum, J. Phys. Chem. C, 2009, 113, 17595-17598.
  97. 82. Guihua Yu, Liangbing Hu, Nian Liu, Huiliang Wang, Vosgueritchian Michael, Yuan Yang, Cui Yi, and Zhenan Bao, Nano Lett, 2011, 11, 4438-4442.
  98. 86. Li Li , Hau Seng Kuok, Chen Zhixin, Liu Huakun, P. Nevirkovets Ivan, Guo Zaiping, Electrochimica Acta 2013, 87, 801-808.
  99. 87. Sun Dan Deng, ChunHui Wu, Hao Wang, JingBing Liu, YuXiu Sun, Hui Yan, Electrochimica Acta 2013,111, 707-712.
  100. 88. Yu-Ting Weng, Nae-Lih Wu, Journal of Power Sources 2013, 238, 69-73.
  101. 89. Chen Z. W., Lai J. K. L., Shek C. H., Journal of Non-Crystalline Solids 2006, 352, 3285-3289.
  102. 90. Raj Kishore Sharma, Hyung-Suk Oh, Yong-Gun Shul, Hansung Kim, Physica B 2008, 403 1763-1769.
  103. 91. W.A. groen, C. metzmacher, P. huppertz & S. schuurman, Journal of Electroceramics, 2001, 7, 77-87.
  104. 92. S. Devaraj and N. Munichandraiah, Journal of The Electrochemical Society, 2007,154, 2, 80-88.
  105. 93. N. Nagarajan, M. Cheong, I. Zhitomirsky, Materials Chemistry and Physics, 2007, 103, 47-53.
  106. 94. Xian-Ming Liu, Shao-Yun Fu, Chuan-Jun Huang, Powder Technology, 2005, 154, 120-124.
  107. 95. N. Reddy Ravinder, and G. Reddy Ramana, Journal of Power Sources, 2004,132, 315-320.
  108. 97. Masaya Chiganez and Masami Ishikawa, Journal of The Electrochemical Society, 2000, 147 (6) 2246-2251.
  109. 99. Masaya Chigane, Masami Ishikawa, and Masanobu Izaki, Journal of The Electrochemical Society, 2001, 148, 7 96-101.
  110. 100. J.-K. Chang and W.-T. Tsai, Journal of Applied Electrochemistry, 2004, 34: 953-961.
  111. 101. Li Li, Kuok Hau Seng, Zhixin Chen, Huakun Liu, P. Nevirkovets Ivan, Zaiping Guo, Electrochimica Acta 2013, 87, 801-808.
  112. 103. Yongsong Luo, Jian Jiang, Weiwei Zhou, Huanping Yang, Jingshan Luo, Xiaoying Qi, Hua Zhang, Y. W. Yu Denis, Li Chang Ming and Yu Ting, J. Mater. Chem., 2012, 22, 8634-8640.
  113. 104. P. Dubal Deepak and Holze Rudolf, New J. Chem., 2013, 37, 403-408.
  114. 105. Rong-Rong Bi, Ya-Xia Yin, Yu-Guo Guo, and Li-Jun Wan, J. Nanosci. Nanotechnol., 2011, Vol. 11, No. 3.
  115. 106. Jianwei Liu, Essner Jeremy, and Jun Li, Chem. Mater., 2010, 22, 5022-5030.
  116. 107. Zhen Fan, Jinhua Chen, Mingyong Wang, Kunzai Cui, Haihui Zhou and Yafei Kuang, Diamond & Related Materials, 2006, 15, 1478-1483.
  117. 110. Jing Bing Liu, Dan Sun, and Chun Hui Wu, Electrochimica Acta 2013, 111, 707-712.
  118. 111. Guoping Xiong, K.P.S.S. Hembram, R.G. Reifenberger and S. Fisher Timothy, Journal of Power Sources 2013, 227, 254-259.
  119. 113. Chung Jung Hung, Pang Lin, and Tseung Yuen Tseng, Journal of Power Sources 2014, 259,145-153.
  120. 114. B. E., Conway, New York, NY: Kluwer Academic Publishers, Plenum Press, 1999.
  121. 116. Kundu Manab and Lifeng Liu, Journal of Power Sources, 2013, 243, 676-681.
  122. 119. Chung Jung Hung, Pang Lin, and Tseung Yuen Tseng, Journal of Power Sources 2014, 259,145-153.
  123. 121. C. Moreno-Castilla, M.V. Lo´pez-Ramo´n, F. Carrasco-Mar´ın, Carbon 2000, 38, 1995-2001.
  124. 122. S. SHIN, J. JANG, S.-H. YOON and I. MOCHIDA, Carbon, 1997, 35, 12, 1739-1743.
  125. 123. V. Berbenni, A. Marini, Materials Research Bulletin, 2003, 38, 1859-1866.
  126. 124. Shin-Liang Kuo and Nae-Lih Wu, Journal of The Electrochemical Society, 2006, 153, 7 1317-1324.