Title

鼠緻密骨組織微結構與機械性質之研究

Translated Titles

Microstructure and Mechanical Properties of Cortical Bone Tissues of Mice

DOI

10.6845/NCHU.2009.00256

Authors

張媛婷

Key Words

骨骼 ; 機械性質 ; bone ; mechanical properties

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

張守一

Content Language

繁體中文

Chinese Abstract

骨骼是由多層次的結構複合而成,釐清其內部各微細結構與機械性質之間的關連性,對於骨骼病理學之研究以及仿生材料之開發皆有相當大的助益。因此,本研究採用五種不同條件之老鼠,透過高解析 X 光微型電腦斷層掃瞄及掃描式電子顯微鏡,分析鼠骨之礦物質密度及其微結構與成分,並以穿透式電子顯微鏡觀察緻密骨內側與外側氫氧基磷灰石晶體與膠原纖維之排列形貌,比較不同條件之鼠骨其結構上的差異;同時以動態機械分析與奈米壓痕測試量測鼠骨之巨觀與微觀機械性質,並分析緻密骨內側至外側之機械性質變化,釐清骨骼微細結構與機械性質之間的關連性,並探討骨質流失與營養補充對於鼠骨微結構與機械性質之影響。 研究結果發現,正常鼠與假手術鼠之股骨緻密骨結構緊密,由許多氫氧基磷灰石晶體附著在膠原纖維上成束排列構成,鈣磷含量較高,且纖維排列方向大致相同,因此其機械強度較高。切除卵巢鼠因受體內雌激素下降之影響,導致骨質流失,因此結構較為鬆散,且膠原纖維與氫氧基磷灰石晶體之排列凌亂,鈣磷含量亦較低,故機械強度較差。切除卵巢後之老鼠分別以酪蛋白及發酵乳餵養,發現部份老鼠對酪蛋白的吸收效果不佳,而部份老鼠則可吸收酪蛋白、降低骨質流失之發生,但其成效有限。發酵乳則可有效促進切除卵巢鼠對鈣磷的吸收與補充,可抑制其骨質流失,使其骨礦物質密度及機械性質皆可維持與正常鼠相當。

English Abstract

To clarify the relation between the microstructures and mechanical properties of hierarchical bone structures benefits the research of skeletal pathology and the development of biomimic materials. Thus in this study, the mineral densities, microstructures and compositions, as well as the arrangement of hydroxyl appetites and collagens, of mouse cortical bones were examined by micro-computed tomography and electron microscopy. The macroscopic and microscopic mechanical properties of these mouse bones were measured by dynamic mechanical analyses and instrumented nanoindentation to clarify their relation to bone structures and to realize the effects of osteoporosis and nutritional supplement on bone structures and mechanical properties. The dense thigh bone structures of control and sham-operated mice composed of aligned collagen fibers and hydroxyl appetite crystals with high calcium and phosphorous contents had high mechanical properties. On the contrary, due to the osteoporosis caused by decreased estrogen, the bone structures of ovariectomy mice was loose with random arrangement of hydroxyl appetite crystals and collagen fibers and also low calcium and phosphorous contents, thus lowering the mechanical properties. Some of the nutrition-supplemented ovariectomy mice presented a poor absorption efficiency to casein, while the others had a positive but limited effect to inhibit osteoporosis. In comparison, fermented milk effectively enhanced the absorption of calcium and phosphorous, and inhibit osteoporosis, thus improving the mineral density and mechanical properties of the bones of variectomy mice.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [1] L.P. Hiller, S.M. Stover, V.A. Gibson, J.C. Gibeling, C.S. Prater, S.J. Hazelwood, O.C. Yeh, and R.B. Martin, “Osteon pullout in the equine third metacarpal bone: Effects of ex-vivo fatigue”, J. Orthop. Res., 21 (2003) 481-488
    連結:
  2. [2] P. Braidotti, E. Bemporad, T.D. Alessio, S.A. Sciuto, and T. Stagni “Tensile experiments and SEM fractography on bovine subchondral bone” J. Biomech., 33 (2000) 1153-1157
    連結:
  3. [3] A. Dumas, C. Gaudin-Audrain, G. Mabilleau, P. Massin, L. Hubert, M.F. Basle, and D. Chappard, “The influence of processes for the purification of human bone allografts on the matrix surface and cytocompatibility”, Biomaterials, 27 (2006) 4204–4211
    連結:
  4. [4] C.Y. Ooi, M. Hamdi, and S. Ramesh, “Properties of hydroxyapatite produced by annealing of bovine bone”, Ceramics International, 33 (2007) 1171–1177
    連結:
  5. [5] A.J. Bushby, V.L. Ferguson, and A. Boyde, “Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate”, J. Mater. Res., 19 (2004) 249-259
    連結:
  6. [6] J. Norman, J.G. Shapter, K. Short, L.J. Smith, and N.L. Fazzalari, “Micromechanical properties of human trabecular bone:A hierarchical investigation using nanoindentation”, J. Biomed. Mater. Res. A , 87 (2008) 196-202
    連結:
  7. [7] Z. Fan, J.G. Swadener, J.Y. Rho, M.E. Roy, and G.M. Pharr, “Anisotropic properties of human tibial cortical bone as measured by nanoindentation”, J. Orthop Res., 20 (2002) 806-810
    連結:
  8. [8] L. Mulder, J.H. Koolstra, J.M.J.d. Toonder, and T.M.G.J. van Eijden, “Intratrabecular distribution of tissue stiffness and mineralization in developing trabecular bone”, Bone 41 (2007) 256-265
    連結:
  9. [10] M.A. Rubin, and I. Jasiuk, “The TEM characterization of the lamellar structure of osteoporotic human trabecular bone”, Micron, 36 (2005) 653–664
    連結:
  10. [11] D. Taylor, J.G. Hazenberg, and T.C. Lee “Living with cracks: Damage and repair in human bone”, Nature Materials, 6 (2007) 263-268
    連結:
  11. [12] J.W. Ager III, G. Balooch, and R.O. Ritchie “Fracture, aging, and disease in bone”, J. Mater. Res., 21 (2006) 1878-1892
    連結:
  12. [13] J.G. Hazenberg, D. Taylor, T.C. Lee “Mechanisms of short crack growth at constant stress in bone”, Biomaterials, 27 (2006) 2114–2122
    連結:
  13. [14] N.D. Sahara, S.I. Hongb, and D.H. Kohn, “Micro- and nano-structural analyses of damage in bone”, Micron, 36 (2005) 617–629
    連結:
  14. [18] M.A. Rubin, I. Jasiuk, J. Taylor, J. Rubin, “TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone”, Bone, 33 (2003) 270-282
    連結:
  15. [19] J.M. Somerville, R.M. Aspden, K.E. Armour, K.J. Armour, and D.M. Reid, “Growth of C57Bl/6 Mice and the Material and Mechanical Properties of Cortical Bone from the Tibia”, Calcif. Tissue Int., 74 (2004) 469–475
    連結:
  16. [20] S.C. Manolagas, and R.L. Jilka, “Bone Marrow, Cytokines, and Bone Remodeling”, N. Engl. J. Med., 332 (2006) 305-311
    連結:
  17. [21] P. Ammann, “Bone strength and ultrastructure”, Osteoporos Int., (2009) 1081-1083
    連結:
  18. [22] C.L. Benhamou, “Bone ultrastructure: evolution during osteoporosis and aging”, Osteoporos Int., (2009) 1085-1087
    連結:
  19. [23] T. Wang, and Z. Feng “Dynamic mechanical properties of cortical bone: The effect of mineral content”, Materials Letters, 59 (2005) 2277 – 2280
    連結:
  20. [21] H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl “From brittle to ductile fracture of bone”, Nature Materials, 5 (2006) 52-55
    連結:
  21. [22] M.T. Fondrk, E.H. Bahniuk, and D.T. Davy.” A damage model for nonlinear tensile behavior of cortical bone”, J. Biomech. Eng., 121 (1999) 533–41.
    連結:
  22. [23] S.P. Kotha, and N. Guzelsu, “Tensile behavior of cortical bone: Dependence of organic matrix material properties on bone mineral content”, J. Biomech., 40 (2007) 36–45
    連結:
  23. [24] S.P. Kotha, and N. Guzelsu, “Tensile damage and its effects on cortical bone”, J. Biomech., 36 (2003) 1683–1689
    連結:
  24. [25] V. Ebacher, C. Tang , H. McKay, T. R. Oxland, P. Guy, and R. Wang “Strain redistribution and cracking behavior of human bone during bending”, Bone, 40 (2007) 1265–1275
    連結:
  25. [26] J.L. Schriefer, A.G. Robling, S.J. Warden, A.J. Fournier, J.J. Mason, and C.H. Turner “A comparison of mechanical properties derived from multiple skeletal sites in mice”, J. Biomech., 38 (2005) 467–475
    連結:
  26. [30] A.H. Burstein, J.D. Currey, V.H. Frankel, and D.T. Reilly. “The ultimate properties of bone tissue: the effects of yielding”, J Biomech., 5 (1972) 35–44.
    連結:
  27. [31] R.M. Guedesa, J.A. Simo, and J.L. Morais, “Viscoelastic behaviour and failure of bovine cancellous bone under constant strain rate”, J. Biomech., 39 (2006) 49–60
    連結:
  28. [27] J. Yamashita, B.R. Furman, H.R. Rawls, X. Wang, and C.M. Agrawal, “The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone”, J. Biomed. Mater. Res. (Appl. Biomater.), 58 (2001), 47–53.
    連結:
  29. [28] J. Yamashita, X.O. Li, B.R. Furman, H.R. Rawls, X.D. Wang, and C.M. Agrawal, “Collagen and bone viscoelasticity: a dynamic mechanical analysis”, J. Biomed. Mater. Res., 63 (2002), 31–36.
    連結:
  30. [29] J.F. Mano, “Viscoelastic properties of bone: Mechanical spectroscopy studies on a chicken model”, Mat. Sci. Eng. C, 25 (2005) 145–152
    連結:
  31. [30] R. Schaller, S. Barrault, and Ph. Zysset, “Mechanical spectroscopy of bovine compact bone”, Mat. Sci. Eng., 370 (2004) 569–574
    連結:
  32. [36] T. Hoc, L. Henry, M. Verdier, D. Aubry, L. Sedel, and A. Meunier, “Effect of microstructure on the mechanical properties of Haversian cortical bone”, Bone 38 (2006) 466-474
    連結:
  33. [37] E. Donnelly, S.P. Baker, A.L. Boskey, M.C.H. van der Meulen, “Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation”, J. Biomed. Mater. Res. 77A (2006) 426-435
    連結:
  34. [38] J. Y. Rho, P. Zioupos, J. D. Currey, and G. M. Pharr, “Variations in the Individual Thick Lamellar Properties Within Osteons by Nanoindentation”, Bone, Vol. 25, No. 3 (1999)
    連結:
  35. [39] H.S. Gupta, U. Stachewicz, and W. Wagermaier, P. Roschger, H.D. Wagner, P. Fratzl, “Mechanical modulation at the lamellar level in osteonal bone”, J. Mater. Res., Vol. 21, No. 8, p. 1913-1921 (2006)
    連結:
  36. [40] L. Mulder, J.H. Koolstra, J.M.J. den Toonder, and T.M.G.J. van Eijden, “Intratrabecular distribution of tissue stiffness and mineralization in developing trabecular bone”, Bone, 41 (2007) 256–265
    連結:
  37. [42] I. N. Sneddon, “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile”, Int. J. Eng. Sci., (1965) 47-56
    連結:
  38. [43] M.F. Doerner and W.D. Nix, “A method for interpreting the data from depth-sensing indentation instruments”, J. Matert. Res., 1 (1986) 601
    連結:
  39. [44] W.C. Oliver and G.M. Pharr, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation”, J. Mater. Res., 7 (1992) 613-61
    連結:
  40. [47] S.V. Dorozhkin, and M. Epple, “Biological and Medical Significance of Calcium Phosphates”, Angew. Chem. Int. Ed., 41 (2002) 3130 - 3146
    連結:
  41. [9] J. John, and M.D. Gartland, “Fundamentals of orthopaedics”, Saunders, Philadelphia, (1987). 賴祐平 編譯,“基礎骨科學”, 藝軒圖書出版社,台北市 (1994) p. 4-10
  42. [15] B.L. Riggs, and L.J. Melton, “Osteoporosis: etiology, diagnosis, and management.”, Raven Press, New York, (1988). 楊榮森 編譯,“骨質疏鬆症:病因.診斷.治療”,合計圖書出版社,台北市 (1997) p. 1-73, 261-267, 369-375
  43. [16] L.C. Junqueira, J. Carneiro, and R.O. Kelley, “Basic Histology, (9 edition)”, Mcgraw-hill, International. 賴昆成、徐淑媛、陳建行 編譯,“基礎組織學,(第九版)”,合計圖書出版社,台北市 (2000) p. 134-151
  44. [17] A. Stevens, and J.S. Lowe, “Human Histology (3 edition)”, Mosby, English. 尹相姝 編譯,“人體組織學,(第三版)”,藝軒圖書出版社,台北縣,(2006) p. 251-263
  45. [41] H. Hertz, and J. Reine, “On the Contact of Rigid Elastic Solids and on Hardness”, Verh Ver Beforderung Gewerbe Fleisses, 61 (1881) 410
  46. [45] 陳家全、李家維、楊瑞森「生物電子顯微鏡書」,行政院國家科學委員會精密儀器發展中心編印,第 23-60 頁。
  47. [46] Menu of Skyscan 1076 in vivo Micro CT.
  48. [48] TriboScope User Manual, Hysitron Inc.