Title

液化澱粉芽孢桿菌Bacillus amyloliquefaciens JN68之培養及其抗真菌脂胜肽iturin A之純化及特性分析

Translated Titles

Culture conditions of Bacillus amyloliquefaciens JN68 and purification and characterization of an antifungal lipopeptide - iturin A

Authors

黃立彬

Key Words

液化澱粉芽孢桿菌 ; 天然抑菌劑 ; 酸沉澱法 ; 固相萃取法 ; Iturin A ; Bacillus amyloliquefaciens ; natural antibacterial agent ; acid precipitation ; solid phase extraction ; iturin A

PublicationName

中興大學食品暨應用生物科技學系所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

陳錦樹

Content Language

繁體中文

Chinese Abstract

液化澱粉芽孢桿菌(Bacillus amyloliquefaciens)能產生多種抑生物質(如iturin A, fengycin及surfactins),抑制多種細菌、真菌的生長,具作爲天然抑菌劑之潛力。本研究探討培養基組成及培養條件對B. amyloliquefaciens JN68抑菌能力之影響,再分別以酸沉澱法(acid precipitation)、固相萃取法(solid phase extraction)及以上兩種方法純化組合iturin A,進而建立較適純化條件,探討其最後對多種食品中常見病原菌之抑生能力。 實驗結果顯示,調整培養基成份為氮源12.5 g/l tryptone、添加1 mmol L-1 FeSO4·7H2O及4 mmol L-1 MgCl2·6H2O、培養條件為溫度30℃、起始pH 6.7-6.8、接種量1%、振盪速率180 rpm、培養48小時,其培養上清液對Aspergillus niger抑菌能力最好,抑菌圈直徑為17.05 mm。 B. amyloliquefaciens JN68培養上清液抑菌成分之耐受性方面,於不同pH(pH 2.0-10.0)環境下一小時之抑菌能力並無明顯差異;於-80℃ ~ 60℃對其抑菌能力並無影響。但於100℃下一小時後,抑菌活性下降30%,而在121℃下一小時則完全失去活性。不同水解酵素對B. amyloliquefaciens JN68培養上清液之抑菌能力並無任何影響。 酵素活性試驗方面,B. amyloliquefaciens JN68培養液之中性蛋白酶活性於第一天即達最高峰,為160 U/ml;其澱粉酶在一天後快速上升,然後緩慢上升並於第五天活性達到最高峰,約1.33 U/ml。 Iturin A之分離與純化方面,取50 ml B. amyloliquefaciens JN68培養上清液分別利用酸沉澱及固相萃取進行iturin A之純化, iturin A產量分別為0.50 mg及1.05 mg。經固相萃取純化後之iturin A對測試之病原菌及真菌都有明顯抑制作用,其中真菌Actinomucor taiwanensis BCRC31159之抑菌圈直徑最大,為22.57 mm。而經固相萃取純化之iturin A對Staphylococcus aureus BCRC12154及Salmonella enterica BCRC10747等細菌有較好之抑菌效果,其抑菌圈直徑介於22.82-23.79 mm之間。 調整iturin A為10 μg/ml對S. aureus BCRC12154及Sal. enterica BCRC10747抗菌指數為50%,對Escherichia coli BCRC11634及Listeria monocytogenes BCRC15330抑菌分別為13.2%及25%。濃度為7 μg/ml之iturin A對Act. taiwanensis BCRC31159具有較佳之抗菌指數,為68.9%,其次為Asp. niger BCRC32073,為48.3%,而Aspergillus oryzae BCRC32279最差,為21.7%。

English Abstract

Bacillus amyloliquefaciens, that has the potential to be a natural antibacterial agent, has the ability to produce various antimicrobial substances that can effectively inhibit the growth of bacteria and fungi. The aim of the study was to produce, purify and characterize the antimicrobial substance, iturin A, from a B. amyloliquefaciens JN68 isolate. The optimal medium composition and culture conditions for B. amyloliquefaciens JN68 were determined with shaking flask (capacity 100 ml/250 ml). The results showed that 12.5 g/l tryptone as nitrogen source, 1 mmol L-1 FeSO4·7H2O and 4 mmol L-1 MgCl2·6H2O as additional metal ions, incubation temperature at 30℃, initial pH at 6.7-6.8, inoculum size was 1% (v/v), and shaking rate at 180 rpm for 48 hours, the cell-free supernatant gave the best antimicrobial activity against Aspergillus niger, with diameter of inhibition zone being 17.05 mm. The antimicrobial activity of cell-free supernatant retained over a pH range of 2.0-10.0. The antimicrobial activity (diameter of inhibition zone > 15.78 mm) was stable ranging from -80 to 60℃, but residual activity decreased at 100℃. All activity was lost after incubation at 121℃. No obvious variation tendency was observed after hydrolytic enzyme degradation. The neutral protease activity of B. amyloliquefaciens JN68 was 160 U/ml incubated after 1 day, while amylase activities about 1.16-1.33 U/ml in the culture broth were obtained between 2-5 days under optimal conditions. The cell-free supernatant (50ml) from B. amyloliquefaciens JN68 was purified by acid precipitation and C18 solid phase extraction, respectively. The amount of crude extracted iturin A obtained from acid precipitation method and C18 solid phase extraction were about 0.50 mg and 1.05 mg respectively. Crude iturin A extract obtained from C18 solid phase extraction showed the best antifungal activity against Actinomucor taiwanensis BCRC31159, which diameter of inhibition zone was 22.57 mm; and showed better antibacterial activity on Staphylococcus aureus BCRC12154 and Salmonella enterica BCRC10747, which radius of inhibition zone ranged from 22.82 to 23.79 mm. Concentration of crude iturin A extract at 10 μg/ml showed 50% antibacterial index to S. aureus BCRC12154 and Sal. enterica BCRC10747, while showed that only 13.2% and 25% to Escherichia coli BCRC11634 and Listeria monocytogenes BCRC15330, respectively. Concentration of crude iturin A extract at 7 μg/ml showed the largest antibacterial index, about 68.9%, on Act. taiwanensis BCRC31159. However, the antibacterial index to Asp. niger BCRC32073 and Aspergillus oryzae BCRC32279 decreased to 48.3% and 21.7%, respectively.

Topic Category 農業暨自然資源學院 > 食品暨應用生物科技學系所
生物農學 > 生物科學
Reference
  1. 邱安隆。2007。植物病害生物製劑研發與應用。花蓮區農業專訊。48 : 21-24。
    連結:
  2. 林秀芬,陳滄海,劉顯達。2011。枯草桿菌Bacillus subtilis BS-99-H之iturin A 抗菌物質對蓮霧果腐病原菌Pestalotiopsis eugeniae 之生物活性。植病會刊。19:225-233。
    連結:
  3. 郭建志,陳俊位,廖君達,陳葦琳,蔡宜?。2014。液化澱粉芽孢桿菌在作物病害防治的開發與應用。農業生物資材產業發展研討會專刊。121:69-86。
    連結:
  4. 農藥資訊服務網: 行政院農業委員會動植物防疫檢疫局
    連結:
  5. Alcaraz L.D., Moreno-Hagelsieb G., Eguiarte L.E., Souza V., Herrera-Estrella L., Olmedo G. 2010. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. Biomedical Central Genomics, 11: 332.
    連結:
  6. Alejandro P.G., Romero D. and Vicente A.D., 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Option in Biotechnology, 22: 187-193.
    連結:
  7. Anson M.L., 1938. The estimation of pepsin, trypsin, papain and cathespsin with hemoglobin. The Journal of General Physiology, 22: 79-89.
    連結:
  8. Arima K., Kakinuma A., and Tamura G., 1968. Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications, 31: 488-494.
    連結:
  9. Asaka O., and Shoda M., 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied Environmental Microbiology, 62: 4081-4085.
    連結:
  10. Bajaj B.K., Singh S., Khullar M., Singh K. and Bhardwaj S., 2014. Optimization of fibrinolytic protease production from Bacillus subtilis I-2 using Agro-residues. Brazilian Archives of Biology and Technology, 57: 653-662.
    連結:
  11. Bessler C., Schmitt J., Maurer K., and Schmid D.R., 2003. Directed evolution of a bacterial amylase: Toward enhanced pH-performance and higher specific activity. Protein Science, 12: 2141–2149.
    連結:
  12. Besson F., and Michel G., 1987. Isolation and characterization of new Iturin: Iturin D and Iturin E. The Journal of Antibiotics, 40: 437.
    連結:
  13. Besson F., Chevanet C. and Michel G., 1987. Influence of the culture medium on the production of iturin A by Bacillus subtilis. Journal of general microbiology, 3: 767–772.
    連結:
  14. Besson F., Peypoux F., and Michel G., 1979. Antifungal activity upom Saccharomyces cerevisae of iturin A, mycosubtilin, bacillomycin L and of their dervivatives; inhibition of this Antifungal activity by lipid antagonist. The Journal of Antibiotics, 32: 828.
    連結:
  15. Besson F., Peypoux F., Michel G., and Delcambe L., 1978. Identification of antibiotics of iturin group in various strains of Bacillus subtilis. The Journal of Antibiotics, 31: 284.
    連結:
  16. Bland J.M., 1996. The first synthesis of a member of the Iturin family, the antifungal cyclic lipopeptide, Iturin A2. The Journal of Organic Chemistry, 61: 5663-5664.
    連結:
  17. Bottone E.J., and Peluso R. W., 2003. Production by Bacillus pumilus (MSH) of an antifungal compound that is active against Mucoraceae and Aspergillus species: Preliminary report. Journal of Medical Microbiology, 52: 69–74.
    連結:
  18. Brückner H., and Przybylski M., 1984. Methods for the rapid detection, isolation and sequence determination of ‘peptaibols’ and other Aib-containing peptides of fungal origin. I. Gliodeliquescin A from Gliocladium deliquescens. Chromatographia, 19: 188–199.
    連結:
  19. Cai X., Ma J., Wei D.Z., Lin J.P., and Wei W., 2014. Functional expression of a novel alkaline-adapted lipase of Bacillus amyloliquefaciens from stinky tofu brine and development of immobilized enzyme for biodiesel production. Antonie Van Leeuwenhoek, 106: 1049-1060.
    連結:
  20. Caldeira A.T., Feio S.S., Arteiro J.M.S., Coelho A.V., and Roseiro J.C., 2007. Environment dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen pattern. Journal of Applied Microbiology, 104: 808-816.
    連結:
  21. Chan Y.K., Savard M., and Seguin C., 2009. Identification of lipopeptide antibiotic of a Bacillus subtilis isolate and their control of Fusarium graminearum disease in maize and wheat. Biocontrol, 54: 567-574.
    連結:
  22. Chen H., Wang L., Su C.X., Gong G.H., Wang P., and Yu Z.L., 2008. Isolation and characterization of lipopeptide antibiotics by Bacillus subtilis. Letters in Applied Microbiology, 47(3): 180-186.
    連結:
  23. Cheol L.S., Kim S.H., Park I.H., Chung S.Y., Chandra M.S., and Choi Y.L., 2010. Isolation, purification, and characterization of novel fengycin S from Bacillus amyloliquefaciens LSC04 degrading-crude oil. Biotechnology and Bio process Engineering, 15: 246-253.
    連結:
  24. Chevanet, C., Besson, F. and Michel, G. 1986. Effect of various growth conditions on spore formation and bacillomycin L production in Bacillus subtilis. Canadian Journal of Microbiology, 32: 254–258.
    連結:
  25. Cho K.M., Math R.K., Hong S.Y., Asraful Islam S.Md., Mandanna D.K., Cho J.J., Yun M.G., Kim J.M., and Yun H.D., 2009. Iturin produced by Bacillus pumilus HY1 from Korean soybean sauce (kanjang) inhibits growth of aflatoxin producing fungi. Food Control, 20 : 402-406.
    連結:
  26. Cho S.J., OH S.H., Pridmore R.D., Juillerat M.A., and Lee C.H., 2003. Purification and characterization of proteases from Bacillus amyloliquefaciens isolated from traditional soybean fermentation starter. Journal Agricultural and Food Chemistry, 51: 7664-7670
    連結:
  27. Cohn F., 1872. Untersuchungen über Bakterien. Beitrage zur Biologie der Pflanzen Heft 2. 1: 127-224.
    連結:
  28. Coleman J.R., and Colman B., 1981. Inorganic carbon accumulation and photosynthesis in a blue-green alga as a function of external pH. Plant Physiology, 16: 917-921
    連結:
  29. Davis D.A., Lynch H.C., and Varley, J. 1999. The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microbiology Technology, 25: 322–329.
    連結:
  30. De M., Das K.P., and Chakrabartty P.K., 1995. Purification and characterization of alpha-amylase from Bacillus amyloliquefaciens NCIM 2829. Indian Journal of Chemistry & Biophysics, 42(5): 287-294.
    連結:
  31. Deb P., Talukdar S.A., Mohsina K., Sarker P.K., and Sayem SM. A., 2013. Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. SpringerPlus, 2: 154.
    連結:
  32. Dhanya G., Nampoothiri, Madhavan K., and Swetha S., 2009. Biochemical characterization of raw-starch-digesting alpha amylase purified from Bacillus amyloliquefaciens. Applied Biochemistry and Biotechnology, 158(3): 653-662.
    連結:
  33. Dieckmann R., Pavela-Vrancic M., and Döhren H., 2001. Synthesis of (di)adenosine polyphosphates by non-ribosomal peptide synthetases (NRPS). Biochimica et Biophysica Acta, 1546: 234–241.
    連結:
  34. Dowling D.N., and O’ Gara F., 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends in Biotechnology, 12: 133-141.
    連結:
  35. Fravel D.R., 2005. Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43: 337-359.
    連結:
  36. Hadj-Ali N.E., Agrebi R., Ghorbel-Frikha B., Sellami-Kamoun A., Kanoun S., and Nasri M., 2007. Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated Bacillus licheniformis NH1. Enzyme and Microbial Technology, 40, 515–523.
    連結:
  37. Halimi B., Dortu C., Arguelles-Arias A., Thonart P., Joris B., and Fickers P., 2010. Antilisterial activity on poultry meat of amylolysin, a bacteriocin from Bacillus amyloliquefaciens GA1. Probiotics and Antimicrobial Proteins, 2(2): 120-125.
    連結:
  38. Hiradate S., Yoshida S., Sugie H., Yada H., and Fujii Y., 2002. Mulberry antharacnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry, 61: 693-698.
    連結:
  39. Isman M.B., Koul O., Luczynski A., and Kaminski J., 1990. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. Journal of Agricultural of Food Chemistry, 38(6): 1406-1411
    連結:
  40. Kasana R.C., Salwan R., and Yadav S.K.., 2011. Microbial proteases: detection, production, and genetic improvement. Critical Reviews in Microbiology,37: 262–276.
    連結:
  41. Latoud C., Peypoux F., and Michel G., 1987. Action of Iturin A, an antifungal antibiotic from Bacillus subtilis, on the yeast Saccharomyces cerevisiae: Modifications of membrane permeability and lipid composition. The Journal of Antibiotics, 11(11): 1688-1595.
    連結:
  42. Lee Y.J., Kim B.K., Lee B.H., Jo K.I., Lee N.K., Chung C.H., Lee Y.C., Lee J.W., 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology, 99(2): 378-386.
    連結:
  43. Li X.Y., Mao Z.C., and Long C.L., 2013. Diversity and active mechanism of fengycin-type cyclopeptides from Bacillus subtilis xf-1 against Plasmodiophora brassicae. The Journal of Microbiology, 23: 313-321.
    連結:
  44. Lin H.F., Chen T.H., and Liu S.D., 2011. The antifungal mechanism of Bacillus subtilis against Pestalotiopsis eugeniae and its development for commercial app lications against wax apple infection. African Journal of Microbiology Research, 5(14): 1723-1728.
    連結:
  45. Lin H.Y., Rao Y.K., Wu W.S., and Tzeng Y.M., 2007. Ferrous ion enhanced lipopeptide antibiotic iturin A production from Bacillus amyloliquefaciens B128. International Journal of Applied Science and Engineering, 5(2): 123-132.
    連結:
  46. Logan N.A., and Berkeley R.C.W., 1984. Identification of Bacillus strains using the API system. Journal of General Microbiology, 130: 1871-1882.
    連結:
  47. Maget-Dana R., Ptak M., Peypoux F., and Michel G., 1985. Pore-forming properties of iturin A, a lipopeptide antibiotic. Biochimica et Biophysica Acta, 815: 405–409
    連結:
  48. Mandal S.M., Sharma S., Pinnaka A.K., Kumari A. and Korpolr S., 2013. Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. Microbiology, 13: 152-161.
    連結:
  49. Matsubara H., and Feder J., 1971. Other bacterial mold and yeast proteases. In P. D. Boyer (Ed.), The enzymes (vol 3 3rd ed., pp. 721–795). New York: Acadamic Press.
    連結:
  50. Miller G.L., 1959. Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Analytical Chemistry, 31: 426-428.
    連結:
  51. Milner J.L., Raffel S.J., Lethbridge B.J., and Handelsman, J. 1995. Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Applied Microbiology and Biotechnology, 43: 685–691.
    連結:
  52. Mi-sun L., Na-Kyoung L., and Hoon Kyung, 2010. Isolation and characterization of protease-producing bacterium, Bacillus amyloliquefaciens P27 from meju as a probiotic starter for fermented meat products. Korean Journal for Food Science of Animal Resources, 30: 804-810.
    連結:
  53. Moyne A.L., Cleveland T.E., and Tuzun S., 2004. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Letters, 234: 43–49.
    連結:
  54. Myklestad S.M., and Swift E., 1998. A new method for measuring soluble cellular organic content and a membrane property, Tm, of planktonic algae. European Journal of Phycology, 33: 333–336.
    連結:
  55. Nimer N.A., Brownlee C. and Merrett M.J. 1994. Carbon dioxide availability, intracellular pH and growth of the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series, 109: 257–262.
    連結:
  56. O’ Donnell A.G., Norris J.R., Berkeley R.C.W., Claus D., Kaneko T., Logan A., and Nozaki R., 1981.Characterization of Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis, and Bacillus amyloliquefaciens by pyrolysis gas-liquid chromatography, deoxyribonucleic acid-deoxyribonucleic acid hybridization, biochemical tests, and API systems. International Journal of Systematic Bacteriology, 30: 448-459.
    連結:
  57. Oliveira M.G.A., De Simone S.G., Xavier L.P., and Guedes R.N.C., 2005. Partial purification and characterization of digestive trypsin-like proteases from the velvet bean caterpillar, Anticarsia gemmatalis. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 140: 369–380.
    連結:
  58. Ongena M. and Jacques P., 2007. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
    連結:
  59. Pandey A., Nigam P., Soccol C.R., Soccol V.T., Singh D., and Mohan R., 2000. Advances in microbial amylases (review article). Biotechnology and Applied Biochemistry, 31: 135–152.
    連結:
  60. Peypoux F., Bonmatin J.M., and Wallach J., 1999. Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 51: 553-563.
    連結:
  61. Peypoux F., Guinand M., Michel G., Delambe L., Das B.C., and Lederer E., 1978. Structure of iturin A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry, 17: 3992.
    連結:
  62. Phae C.G., and Shoda M., 1990. Expression of suppressive effect of Bacillus subtilis and its products on pgytopathogens in inoculated coposts. Journal of Fermentation and Bioengineering, 70: 409-411.
    連結:
  63. Phae C.G., Shoda M., and Kuboda H., 1990. Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganisms. Journal of Fermentation and Bioengineering, 69: 1-7.
    連結:
  64. Quentin M.J., Besson F., Peypoux F., and Michel G., 1982. Action of peptidolopidic antibiotics of the iturin group on erythrocytes. Effect of some lipids on hemolysis. Biochimica Biophysica Acta, 684: 207-211.
    連結:
  65. Roseata Z., Khosro K., and Majid M., 2013 Role of the salt bridge between Arg 176 and Glu 126 in the thermal stability of the Bacillus amyloliquefaciens alpha-amylase(BAA). Journal of Microbiology and Biotechnology, 23: 7-14.
    連結:
  66. Roychoudhury S., Parulekar S.J., and Weigang W.A., 1989. Cell-growth and alpha-amylase production characteristics of Bacillus amyloliquefaciens. Biotechnology and Bioengineering, 33(2): 197-206.
    連結:
  67. Rutten R., and Daugulis A.J., 1987. Continuous production of alpha-amylase by Bacillus amyloliquefaciens in a2 stage fermenter. Biotechnology Letters, 9(7): 505-501.
    連結:
  68. Shinmyo A., Kimura H., and Okada H., 1982. Physiology of alpha-amylase production by immobilized Bacillus amyloliquefaciens. European Journal of Applied Microbiology and Biotechnology, 14: 7-12.
    連結:
  69. Smith N.R., Gordon R.E., and Clark F.E., 1946. Aerobic mesophilic spore forming bacteria. Miscellaneous publication (United States. Department of Agriculture), 559.
    連結:
  70. Smith N.R., Nathan R., Gordon R.E., and Clark F.E., 1952. Aerobic spore forming bacteria. Agriculture monograph (United States. Department of Agriculture), 16.
    連結:
  71. Stein T., 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56: 845-857.
    連結:
  72. Sumi C.D., Yang B.W., Yeo I.C., and Hahm Y.T., 2015. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Canadian Journal of Microbiology, 61(2): 93-103.
    連結:
  73. Sutyak K.E., Wirawan R.E., Aroutcheva A.A., and Chikindas M.L., 2008. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. Journal of Applied Microbiology, 104(4): 1067-1074.
    連結:
  74. Szczech M., and Shoda M., 2006. The effect of mode of application of Bacillus subtilis RB14-C on its efficacy as a biocontrol agent against Rhizoctonia solani. Journal of Phytopathology, 154: 370-377.
    連結:
  75. Tao Y., Bie X.M., and Lu Z.X., 2011. Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifera. The Journal of Microbiology, 49: 146-150.
    連結:
  76. Toure Y., Ongena M., Jacques P. Guiro A., and Thonart P., 2004. Role of lipopeptides produced Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology, 96: 1151-1160.
    連結:
  77. Van Kuijk S., Noll K.S., and Chikindas M.L., 2011. The species-specific mode of action of the antimicrobial peptide subtilosin against Listeria monocytogenes Scott A. Letters of Applied Microbiology, 54(1): 52-58.
    連結:
  78. Vanittanaakom N., Loeffler W., Koch U., and Jung G., 1986. Fengycin- A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of Antibiotics, 39: 888-901.
    連結:
  79. Volpon L., Besson F., and Lancelin J.M., 2000. NMR structure of antibiotics plistatins A and B from Bacillus subtilis inhibitors of phospholipase A2. FEBS Letters, 485: 76–80.
    連結:
  80. Von Döhren H., 1995. Peptides. Biotechnology, 28: 129-171.
    連結:
  81. Wang D., Li K., Wang Y., and Zhang J., 2014. Purification and characterization of antifungal lipopeptide from Bacillus amyloliquefaciens BI2. Electrical Engineering, 249: 465-475.
    連結:
  82. Wang J., Xu A., Wan Y., and Li Q., 2013. Purification and characterization of a new metallo-neutral protease for beer brewing from Bacillus amyloliquefaciens SYB-001. Applied Biochemistry and Biotechnology, 170: 2021-2033.
    連結:
  83. Wang Y., Zhu X., Bie X., Lu F., Zhang C., YaoS., and Lu Z., 2014. Preparation of microcapsules containing antimicrobial lipopeptide from Bacillus amyloliquefaciens ES-2 by spray drying. Food Science and Technology, 56(2): 502-507.
    連結:
  84. Winkelmann G., 1983. Iturin AL – a new long chain iturin A possessing an unusual high content of C16-β-amino acid. The Journal of Antibiotics, 36: 1451.
    連結:
  85. Yilmaz M., Soran H., and Beyatli Y., 2006. Antimicrobial activities of some Bacillus spp. Strains isolated from the soil. Microbiology, 161(2): 127-131.
    連結:
  86. Yoshida S., Hiradate S., Tsukamoto T., Hatakeda K., and Shirata A., 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phyopathology, 91: 181-187.
    連結:
  87. Yu G.Y., Sinclais J.B., Hartman G.L., and Bertagnolli B.L., 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry, 34: 955-963.
    連結:
  88. Zhang S.M., Wang Y.X., Meng L.Q., Li J., Zhao X.Y., Cao X.,Chen X.L., Wang A.X., and Li J.F., 2011. Isolation and characterization of antifungal lipopeptides produced by endophytic Bacillus amyloliquefaciens TF28. African Journal of Microbiolofy Research, 6(8): 1747-1755.
    連結:
  89. Zhao P., Quan C., Pin L., Wang L., Wang J., and Fan S., 2013. Effect of critical medium components on the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426 exhibitingexcellent biosurfactant properties. World Journal Microbiology Biotechnology, 29: 401-409.
    連結:
  90. Zhu Z., Zhang G.Y., LuoY., Ran W., and Shen Q.R., 2012. Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate, 112: 254-260.
    連結:
  91. 林弘裕。2002。液化澱粉芽孢桿菌胜肽抗生物質之分析及回收純化探討。國立東華大學生物技術研究所碩士論文。
  92. 陸兆新, 尹鴻萍, 郭傳龍, 呂風霞, 別小妹, 呂雲斌。2013。Application of cyclic lipopeptide Fengycin in preparation of antineoplastic drug。https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/90bf5ef580e797b2e906/CN103182068A.pdf(最後瀏覽日:2015年5月18日)
  93. 高靜華,鄭允。2007。昆蟲性費洛蒙在害蟲防治之應用。作物蟲害之非農藥 防治技術。39-56。
  94. http://pesticide.baphiq.gov.tw/web/briefDetailView.aspx?sn=31 (最後瀏覽日:2015年5月2日)
  95. 劉靜,王軍,姚建銘,潘仁瑞,餘增亮。2004。枯草芽孢桿菌JA抗菌物特性的研究及抗菌肽的分離純化。微生物學報。44(4):511-513。
  96. Benko R., and Highley T., 1990. Selection of media for screening interaction of wood-attacking fungi and antagonistic bacteria. Material und Organismen, 25: 173–180.
  97. Borgia P.T., and Compbell L.L., 1978. Alpha-amylase from 5 strains Bacillus amyloliquefaciens - evidence for identical primary structures. Journal of Bacteriology, 134(2): 389-393.
  98. Buensanteai N., Yuen G.Y., and Prathangwong S., 2008. The Biocontrol Bacterium Bacillus amyloliquefaciens KPS46 prodeces auxin, surfactin and extracellular proteins for enhanced growth of soybean plant. Thai Journal of Agricultural Science, 41: 101-116.
  99. Davidson P.M., and M.E. Parish, 1989. Methods for testing the efficacy of food antimicrobials. Food Technology, 43: 148-155.
  100. Delcambe L., and Devignat R., 1957. L’ iturine, nouvel antibiotiqued’ origine congolaise. Academic radiology, 1-77.
  101. Fukumoto J., 1943. Studies on the production of bacterial amylase. I. Isolation of bacteria secreting potent amylases and their distribution. Journal of the Agricultural Chemical Society of Japan, 19: 487-503 .
  102. Harwood C.R., 1989. Bacillus. Springer Science + Business Media New York 1st edition.
  103. Katz E., and Demain A.L., 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriology Review, 41: 449-474
  104. Kirkvold S. 1994. Unders?kelse av enzymet Glutamin syntetase hos den marin kiselalgen Skeletonema costatum. Thesis, NTH, University of Throndheim.
  105. Lee Y.N., 2003. Calcite Production by Bacillus amyloliquefaciens CMB01. The Journal of Microbiology, 41:345-348.
  106. Nagórska K., Bikowski M. and Obuchowski M., 2007. Multicellular behaviour and production of a wide variety of toxic substances support 68 usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polomica, 54 : 495-508.
  107. Priest F.G., Goodfellow M., Shute L.A., and Berkeley R.C.W., 1987. Bacillus amyloliquefaciens sp. Nov., nom. Rev. International Journal of Systematic Bacteriology, 37: 69-71.
  108. Shaligram N.S., and Singhal R.S., 2010. Surfactin – a review on biosysthesis, fermentation, purification and applications. Food Technology and Biotechnology, 48(2): 119-134.
  109. Ullmann A., 2012. Selected Papers in Molecular Biology by Jacques Monod. Elsevier, 139-162.
  110. Vollenbroich D., Pauli G., Özel M., and Vater J., 1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Applied and Environmental Microbiology, 63: 44-49.
  111. Welker N.E., and Campbell L.L., 1967. Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis. Journal of Bacteriology, 94(4): 1124-1130.