Translated Titles

The preparation of high figure-of-merit N-type BaGaGe alloys by arc-melting and their thermoelectric performance after the vacuum hot-pressing treatment





Key Words

BaGaGe合金 ; 熱電特性 ; 熱電優值 ; 熱壓 ; 真空電弧熔煉 ; 晶籠結構 ; Ba-Ga-Ge alloys ; thermoelectrical performance ; figure of merit ; arc melting ; vacuum hot-pressing ; clathrate structure



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本實驗利用真空電弧熔煉法搭配熱處理的方式製備高熱電優值之 N 型 Ba-Ga-Ge 合金,並探討其材料及熱電特性。另一方面將所製備出之高熱電優值之 N 型 Ba-Ga-Ge 合金進行熱壓改質,並探討經熱壓改質後之材料及熱電特性。 由 EDS 成份定量分析可得知,本實驗所製備之N 型 Ba-Ga-Ge 合金,其實際成份比例為 Ba23.5Ga14Ge86.5。從背向散射電子影像、X 光繞射分析中及Ba-Ge 相圖分析可得知,Ba23.5Ga14Ge86.5 合金中主要是由Ba24GaxGe100-x (Type-III) 相及 Ba8GaxGe46-x (Type-I) 相所組成,並無非晶之 BaGe2 相形成,材料中缺陷因而減少,大幅地提升材料之電性表現。N 型 Ba23.5Ga14Ge86.5 合金之最佳熱電優值在溫度為 600 ℃時,其值為 1.35。 另外經過熱壓改質後之 N 型 Ba23.5Ga14Ge86.5 合金,在熱壓溫度為 400 ℃、500 ℃、600 ℃時,裂痕大幅增加導致電阻率及 Seebeck 係數上升;在熱壓溫度為 700 ℃時,由於 Ge 相形成,晶籠結構受影響,導致電阻率及 Seebeck 係數上升。因此經熱壓改質後試片之熱電特性表現較差。

English Abstract

In this study, the N-type Ba-Ga-Ge alloys with a high thermoelectric performance were prepared by arc re-melting and heat treatment. Some N-type Ba-Ga-Ge alloys were also hot-pressed for attempting to improve the performance. The effects of hot-pressing on metallurgical and thermoelectric properties of N-type Ba-Ga-Ge alloys were studied. From the EDS analysis, the composition of the prepared N-type Ba-Ga-Ge alloy was Ba23.5Ga14Ge86.5. From BEI, XRD and Ba-Ge phase diagram analysis, the Ba23.5Ga14Ge86.5 alloy was composed of the Type-III and Type-I phases without the amorphous BaGe2 phase. This resulted in adecrease of defects and consequently, the electrical performance was improved. The optimal velue of figure-of-merit is 1.35 at 600 ℃. In the hot-pressed N-type Ba-Ga-Ge alloys cracks forming at 400, 500, 600 ℃ result in increases in the electrical resistivity and Seebeck coefficient. At 700 ℃, the clathrate structure is influenced by the formation of the Ge phase. As a result, both the electrical resistivity and Seebeck coefficient increased. That means the thermoelectric performance of the hot-pressed samples was not improved.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
  1. 1.S. Jacobsson and A. Johnson, “The diffusion of renewable energy technology: an analytical framework and key issues for research,” Energy Policy, 28 (2000) 625.
  2. 2.T. J. Seebeck, “Magnetic polarization of metals and minerals,” Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265 (1823).
  3. 4.H. J. Goldsmid and R. W. Douglas, “The use of semiconductors in thermoelectric refrigeration,” Br. J. Appl. Phys., 5 (1954) 386.
  4. 8.W. Jan, J. W. Vandersande and J. P. Fleurial, “Thermal management of power electronics using thermoelectric coolers,” 15th Int. Conf. on Thermoelectrics, Pasadena, (1996) 252.
  5. 12.G. S. Nolas, G. A. Slack, J. L. Cohn and S. B. Schujman, “The next generation of thermoelectric materials,” Proceedings of the 17th International Conference on Thermoelectrics, (1998) 294.
  6. 16.W. Thomson, “Account of researches in thermo-electricity,” Philos. Mag., 8 (1854) 62.
  7. 17.W. Thomson, “On the electrodynamic qualities of metals,” Philos. Trans. R. Soc. London, 146 (1856) 649.
  8. 18.H. J. Goldsmid, “Thermoelectric Refrigeration,” Plenum, New York, (1986)
  9. 19.J. P. Fleurial, A. Borshchevsky, T. Caillat and R. Ewell, “New materials and devices for thermoelectric applications,” Energy Conversion Engineering Conference, (1997) 1080.
  10. 20.L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Phys. Rev. B, 47 (1993) 16631,
  11. 21.N. Scoville, C. Bajgar, J. P. Fleurial and J. Vaderasnde, “Thermal conductivity reduction in SiGe alloys by the addition of nanophase particles,” NanoStuctured Materials, 5 (1995) 207.
  12. 22.M. Jonson and G. D. Mahan, “Mott’s formula for the thermopower and the Wiedemann-Franz law,” Phys. Rev. B, 21 (1980) 4223.
  13. 23.V. I. Fistul, “Heavily Doped Semiconductors,” Plenum, New York, (1969)
  14. 27.S. E. Mohamed, H. S. Hamed and C. Thierry, “Efficient segmented thermoelectric unicouples for space power applications,” Energy Conversion and Management, 44 (2003) 1755.
  15. 29.K. Fujita, T. Mochida and K. Nakamura, “High-temperature thermoelectric properties of NaxCoO2-δ single crystals” Jpn. J. Appl. Phys. 40(7) (2001) 4644.
  16. 30.L. Chen, “Barium-Filled Skutterudite: A High Performance n-Type Thermoelectric Material,” Key Eng. Mater. 224-226 (2002) 197.
  17. 31.K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzides, “Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit” Science 303(5659) (2004) 818.
  18. 32.W. Zhang, L. Chen and X. Li, “High Temperature Thermoelectric Properties of AgPb18+xSbTe20,” Key Eng. Mater. 336-338 I (2007) 857.
  19. 33.N. Okinaka and T. Akiyama, “Thermoelectric Properties of Nonstoichiometric TiO as a Promising Oxide Material for High-temperature Thermoelectric Conversion,” 24th ICT, (2005) 34.
  20. 34.Y. Z. Pei, L. D. Chen, W. Zhang, X. Shi, S. Q. Bai, X. Y. Zhao, Z. G. Mei and X. Y. Li, “Synthesis and thermoelectric properties of KyCo4Sb12” Appl. Phys. Letters 89(2) (2006) 221107.
  21. 35.J.-H. Kim, N. L. Okamoto, K. Kishida, K. Tanaka and H. Inui, “High thermoelectric performance of type-III clathrate compounds of the Ba-Ga-Ge system,” Acta Materialia, 54 (2006) 2057.
  22. 36.C. Mogens, J. Fanni and B. B. Iversen, “The rattler effect in thermoelectric clathrates studied by inelastic neutron scattering,” Phys. B, 385-386 (2006) 505.
  23. 37.G. S. Nolas, J. L. Cohn, G. A. Slask and S. B. Schujman, “Semiconducting Ge clathrates:Promising cadidates for thermoelectric applications,” Applied Physics Letters, 73 (1998) 178.
  24. 38.J. Baumert, C. Gutt, M. Krisch and H. Requardt, “Elastic properties of methane hydrate at high pressures,” Phys. Rev. B, 72(5) (2005) 054302-1.
  25. 39.R. Peter, “Formation of Clathrates,” IEEE (2005) 443.
  26. 40.C.-C. Wilder, B. Horst, P. Silke, B. Michael, S. Frank and G. Yuri, “Ba6Ge25:low-temperature Ge-Ge bond breaking during temperature-induced structure transformation,” Journal of Solid State Chemistry 178 (2005) 715.
  27. 41.V. L. Kuznetsov, L. A. Kuzentsova and A. E. Kaliazin et al., “Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds,” J. Appl. Phys., 87(11) (2000) 7871.
  28. 42.H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza and L. Haming, “Preparation and Structure of a New Germanium Clathrate, Ba24Ge100,” Journal of Solid State Chemistry, 151 (2000) 117.
  29. 43.J. F. Meng et al., “Threefold enhancement of the thermoelectric figure of merit for pressure turned Sr8Ga16Ge30,” Journal of Applied Physics 89 (2001) 1730.
  30. 45.M. J. O’Neill, “Measurement of specific heat functions by differential scanning calorimetry,” Anal. Chem., 38 (1966) 1330.
  31. 3.A. F. Ioffe, S. V. Airapetyants, A. V. Ioffe, N. V. Kolomoets and L. S. Stilbans, “On increasing the efficiency of semiconducting thermocouples,” Dokl. Akad. Nauk SSSR, 106 (1956) 931.
  32. 5.C. E. Kelly, “The MHW converter (RTG),” 10th Int. Conf. on Energy Conversion Engineering, (1975) 880
  33. 6.M. A. Karri, E. F. Thacher, B. T. Helenbrook and M. S. Compeau, “Thermoelectrical energy recovery from the exhaust of a light truck,” 2003 Diesel Engine Emissions Reduction Conference.
  34. 7.F. Eric, “Thermoelectric generator,” New York State Energy Research and Development Authority, (2004).
  35. 9.朱旭山,「熱電材料與元件之發展應用」,工業材料雜誌,第220期,(2005),93
  36. 10.Francis Stabler, “Automotive applications for high efficiency thermoelectrics,” High efficiency thermoelectric workshop, San Diego, California, (2002).
  37. 11.D. M. Rowe, “CRC Handbook of Thermoelectrics,” CRC Press Boca Raton London New York Washington, (1995).
  38. 13.朱旭山,「熱電材料與元件之原理與應用」,電子與材料雜誌,第22期,(2004),78。
  39. 14.Safa Kasap, “Thermoelectric effects in metals:Theermocouples,” (S. O. Kasap 1997-2001) An e-Booklet.
  40. 15.J. C. Peltier, “Nouvelles experiences sur la caloricite des courans electrique,” Ann. Chim. et Phys., 56 (1834) 371.
  41. 24.D. M. Rowe and C. M. Bhandari, “Modern Thermoelectrics,” Holt Saunders, London, (1983).
  42. 25.C. M. Bhandari and D. M. Rowe, “Thermal Conduction in Semiconductors,” Wiley Eastern Limited, New Delhi, (1998).
  43. 26.熊聰,唐新峰,I-型鍺基籠合物 A8IIB16IIIB30IV 的合成及熱電性能研究,武漢理工大學新材所,(2006),第16頁。
  44. 28.張立信,申請中科院承接院外委託計畫,中山科學研究院,中興大學材料科學與工程研究所,(2008) 第18頁。
  45. 44.汪建民,材料分析,中國材料科學學會 (1998)
Times Cited
  1. 王令驊(2014)。以垂直布里居曼法成長 P 型鋇鎵鍺晶籠材料與其熱電特性研究。中興大學材料科學與工程學系所學位論文。2014。1-118。 
  2. 王祈(2014)。添加銅元素對 P 型鋇鎵鍺晶籠材料熱電特性之 影響。中興大學材料科學與工程學系所學位論文。2014。1-91。 
  3. 蔡雨儒(2012)。以粉末冶金法製備BaGaGe晶籠材料及其熱電特性研究。中興大學材料科學與工程學系所學位論文。2012。1-102。 
  4. 張郁雯(2010)。不同Type I - III相比例之BaGaGe晶籠合金之熱電特性研究。中興大學材料科學與工程學系所學位論文。2010。1-87。 
  5. 林以淳(2010)。鋇鎵鍺晶籠熱電合金的成份、鍵結與價帶能譜之分析。中原大學化學工程研究所學位論文。2010。1-136。 
  6. 周旻儀(2014)。致冷晶片之熱效率研究。虎尾科技大學光電與材料科技研究所學位論文。2014。1-87。 
  7. 陳宏孟(2011)。以熱壓法製備不同成分比例BaGaGe合金之熱電特性研究。中興大學材料科學與工程學系所學位論文。2011。1-127。
  8. 蕭秉宏(2016)。微調鎵含量對P型鋇鎵鍺第一型晶籠化合物之熱電性質的影響。中興大學材料科學與工程學系所學位論文。2016。1-103。
  9. 侯宥宏(2017)。探討調整鎵鍺比之P型鋇鎵鍺第一型晶籠化合物之熱電與載子性質。中興大學材料科學與工程學系所學位論文。2017。1-100。