Title

在大腸桿菌胞外表現 Streptomyces 轉麩氨醯胺酶之探討

Translated Titles

Extracellular Expression of Recombinant Streptomyces Transglutaminase in E. coli

DOI

10.6845/NCHU.2015.00464

Authors

陳楷婷

Key Words

轉麩氨醯胺酶 ; 角質酶 ; 胞外表現 ; Transglutaminase ; Cutinase ; Extracellular Expression

PublicationName

中興大學分子生物學研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

楊明德

Content Language

繁體中文

Chinese Abstract

轉麩氨醯胺酶 (transglutaminase, TGase) 為一醯基轉移酵素,可催化蛋白質間的醯基轉移反應,廣泛應用在食品加工、紡織及醫藥工業。過去研究主要聚焦在胞內表現具有酵素活性之 TGase 蛋白,但胞內蛋白在表現上須利用蛋白酶進行切割且在純化上較為不易。為克服上述困難,我們曾將 Streptomyces netropsis propeptide 及 mature TGase 基因以各別並多基因之形式在 E. coli 進行表現,並可於胞內獲得具活性之 mature TGase。然而,將目標重組蛋白表現於 E. coli 胞外,可減少純化上的繁複手續。本研究利用改造後之 S. netropsis TGase,以受同一 T7 啟動子調控但分別表現融合有 pelB 訊號胜肽之 propeptide 及 mature TGase 基因,並觀察改變基因表現順序及改變啟動子對於 TGase 分泌至胞外的影響。結果發現只有 propeptide 在前 mature TGase 在後之構築形式,在胞外才可以偵測到 mature TGase,而讓 propeptide 與 mature TGase 兩基因同時誘導表現或在 propeptide 前端融合 thioredoxin 對於 TGase 蛋白表現及分泌至胞外並無顯著差異。為了促進胞外蛋白的分泌量,進一步由 Thermobifida fusca 染色體 DNA 中增幅出具有水解磷脂質功能的 cutinase 基因,與不同構築形式之 Streptomyces TGase 基因在 E. coli BL21(DE3) 中進行共表現,尋找最適合 TGase 與 cutinase 基因共表現之條件,結果顯示 cutinase 可分泌至胞外且具有幫助胞內蛋白分泌至胞外之能力。利用具 cutinase 基因質體與含改造之 Shkpro- SkTGA 與 S. netropsis 金屬蛋白酶基因之質體在 E. coli 中進行共表現時,利用親合性管柱可由 50 ml 胞外培養液純化得到 0.35 mg 之 mature TGases,純化酵素之比活性為 18.9 U/mg。

English Abstract

Transglutaminase (protein-glutamine:amine γ- glutamyl transferase, EC 2.3.2.13;TGase) is an acyl-transferase enzyme that catalyzes crosslinking between glutamine residue and a variety of primary amines in proteins. It is currently widely used in food processing, textile and pharmaceutical industry. An efficient production of intracellular soluble recombinant pro-TGases in E. coli have been demonstrated by processing the TGases with exogenous protease. Moreover, the strategy of applying co-expression of individual propeptide and mature TGase genes as polycistronic mRNA in E. coli, active form mature TGase could be obtained without protease digestion. However, efficient secretion of TGase into culture medium without tedious purification steps was consider to be more cost-effective. In this study, the modified Streptomyces netropsis TGase propeptide and its mature TGase were individually fused with PelB signal peptide and coexpressed as individual polypeptide under a single T7 promoter control. The amount of extracellular production of mature TGase by the order of gene expression, fusion of thioredoxin to propeptide, and genes regulated by different promoters, were investigated in this study. Results showed that extracellular production of mature TGase was detected only when the genes were expressed in the order of pro-peptide and mature TGase, indicating that the order of gene expression has impact on the mature TGase secretion. However, no significant increase in extracellular TGase production by simultaneous expression of propeptide and mature TGase and those constructs with thioredoxin fused to the propeptide was observed. To facilitate extracellular production of mature TGase, cutinase gene from Thermobifida fusca was cloned and co-expressed with the recombinant TGase genes in E. coli BL21(DE3). Results revealed that T. fusca cutinase as well as the recombinant TGases could be successfully secreted into culture medium. By introducing of exogenous protease genes from S. netropsis into the above host strains, mature S. netropsis TGases could be recovered from intracellular and culture supernatant. After purification by Ni2+-NTA affinity column, 0.35 mg of mature TGase could be obtained from 50 ml culture supernatant and have a specific activity of 18.9 U / mg.

Topic Category 生命科學院 > 分子生物學研究所
生物農學 > 生物科學
Reference
  1. 陳裕成 (2006). Streptomyces 轉麩氨醯胺酶基因選殖分析及利用大腸桿菌細胞生
    連結:
  2. 謝秀英 (2010). 利用 Corynebacterium glutamicum 生產胞外重組 Streptomyces
    連結:
  3. 王冠棋 (2012). 在 Corynebacterium glutamicum 表現具活性之胞外重組
    連結:
  4. 張文政 (2013). 鏈黴菌轉麩氨醯胺酶前胜肽作用之探討,國立中興大學分子生
    連結:
  5. 洪妙子 (2014). 由 Streptomyces netropsis 選殖活化轉麩氨醯胺酶之金屬蛋白酶
    連結:
  6. and Motoki, M. (1989). Purification and characteristics of a novel transglutaminase
    連結:
  7. Production of wild‐type and peptide fusion cutinases by recombinant Saccharomyces
    連結:
  8. cerevisiae MM01 strains. Biotechnol Bioeng 78: 692-698.
    連結:
  9. Chen, J. S., and Mehta, K. (1999). Tissue transglutaminase: an enzyme with a split
    連結:
  10. personality. Int J Biochem Cell Biol 31: 817-836.
    連結:
  11. production of recombinant Thermobifida fusca cutinase by Escherichia coli. Appl
    連結:
  12. Biochem Biotech 165: 666-675.
    連結:
  13. Chen, S., Su, L. Q., Chen, J., and Wu, J. (2013). Cutinase: Characteristics, preparation,
    連結:
  14. and application. Biotechnol Adv 31: 1754-1767.
    連結:
  15. Identification and characterization of bacterial cutinase. J Biol Chem 283: 25854-25862.
    連結:
  16. Structural properties of guinea pig liver transglutaminase. J Biol Chem 246: 1093-1098.
    連結:
  17. new microbial transglutaminase from Streptomyces hygroscopicus WSH03-13 by spray
    連結:
  18. drying. Process Biochem 41: 1427-1431.
    連結:
  19. of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium
    連結:
  20. glutamicum. Appl Environ Microb 69: 3011-3014.
    連結:
  21. expression of Streptomyces mobaraensis transglutaminase in Corynebacterium
    連結:
  22. transglutaminase. J Biotechnol 110: 219-226.
    連結:
  23. (2004). AtPng1p. The first plant transglutaminase. Plant Physiol 135: 2046-2054.
    連結:
  24. characterisation, and gene cloning of transglutaminase from Streptoverticillium
    連結:
  25. Egmond, M. R., and de Vlieg, J. (2000). Fusarium solani pisi cutinase. Biochimie 82:
    連結:
  26. In vitro refolding process of urea-denatured microbial transglutaminase without propeptide
    連結:
  27. sequence. Protein Expres Purif 26: 329-335.
    連結:
  28. proteins with transglutaminase at the oil−water interface. J Arg Food Chem 45: 2514-
    連結:
  29. Folk, J., and Cole, P. (1966). Mechanism of action of guinea pig liver transglutaminase
    連結:
  30. I. purification and properties of the enzyme: identification of a functional cysteine
    連結:
  31. simple method for the purification of transglutaminase from Streptomyces mobaraense.
    連結:
  32. Biochem J 299: 825-829.
    連結:
  33. cutinase in ungerminated conidia of Botrytis cinerea Pers.: Fr. FEMS Microbiol Lett
    連結:
  34. multifunctional cross-linking enzymes that stabilize tissues. FASEB J 5: 3071-3077.
    連結:
  35. Hamann, D. (1993). Rheological studies of fish proteins, pp. 225-234 Food
    連結:
  36. Heslop-Harrison, J. (1975). The Croonian Lecture, 1974: The physiology of the pollen
    連結:
  37. grain surface. P Roy Soc Lond B Bio 190: 275-299.
    連結:
  38. acid sequence of guinea pig liver transglutaminase from its cDNA sequence.
    連結:
  39. Biochemistry 27: 2898-2905.
    連結:
  40. Kahn, D. R., and Cohen, I. (1981). Factor XIIIa-catalyzed coupling of structural
    連結:
  41. proteins. Biochim Biophys Acta 668: 490-494.
    連結:
  42. Gelation and gel properties of soybean glycinin in a transglutaminase-catalyzed system.
    連結:
  43. J Arg Food Chem 42: 159-165.
    連結:
  44. detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp.
    連結:
  45. pisi cutinase. Chemosphere 60: 1349-1355.
    連結:
  46. of transglutaminase from Physarum polycephalum. J Bacteriol 174: 2599-2605.
    連結:
  47. cloning of the transglutaminase gene from Bacillus subtilis and its expression in
    連結:
  48. Escherichia coli. Biosci Biotech Bioch 62: 1109-1114.
    連結:
  49. Kwon, M. A., Kim, H. S., Yang, T. H., Song, B. K., and Song, J. K. (2009). High-level
    連結:
  50. expression and characterization of Fusarium solani cutinase in Pichia pastoris. Protein
    連結:
  51. Liu, S., Zhang, D. X., Wang, M., Cui, W. J., Chen, K. K., Liu, Y., Du, G. C., Chen,
    連結:
  52. Streptomyces fradiae and its enhanced expression in the original strain. Biotechnol Lett
    連結:
  53. and Nakajima, T. (2005). Purification and characterization of a biodegradable plasticdegrading
    連結:
  54. Matheis, G., and Whitaker, J. R. (1987). A review: Enzymatic cross‐linking of proteins
    連結:
  55. corneum and early neonatal death in mice lacking the gene for transglutaminase 1
    連結:
  56. transglutaminase/Gh protein, probed with fluorescent analogs of GTP and GDP. P Natl
    連結:
  57. (1994). Changes caused by microbial transglutaminase on physical properties of
    連結:
  58. Nakari-Setälä, T. (2014). Cloning and characterization of a novel acidic cutinase from
    連結:
  59. Sirococcus conigenus. Appl Microbiol Biot 98: 3639–3650.
    連結:
  60. transesterification reactions catalyzed by lipolytic enzymes. Biotechnol Bioeng 39:
    連結:
  61. The expression of" tissue" transglutaminase in two human cancer cell lines is related
    連結:
  62. with the programmed cell death (apoptosis). Eur J Cell Biol 54: 246-254.
    連結:
  63. stability of Fusarium solani pisi cutinase. Enzyme Microrob Tech 22: 647-651.
    連結:
  64. Sambrook, J., and Russell, D. W. (2001). Molecular Cloning: A laboratory manual.
    連結:
  65. and cross-linking of fibrinogen and fibrin. J Biol Chem 248: 1395-1407.
    連結:
  66. and molecular characterization of a secretory transglutarninase from coagulating gland
    連結:
  67. cuticle of nasturtium (Tropaeolum majus). Plant Physiol 60: 907-915.
    連結:
  68. Characteristics of cutin-esterase from Botrytis cinerea and its activity on tomato-cutin.
    連結:
  69. Plant cell physiol 11: 937–945.
    連結:
  70. solani f. sp. pisi cutinase in Fusarium venenatum A3/5. Biotechnol Lett 29: 1227-1232.
    連結:
  71. Su, L. Q., Xu, C. H., Woodard, R. W., Chen, J., and Wu, J. (2013). A novel strategy for
    連結:
  72. enhancing extracellular secretion of recombinant proteins in Escherichia coli. Appl
    連結:
  73. Microbiol Biot 97: 6705-6713.
    連結:
  74. Sukchawalit, R., Vattanaviboon, P., Sallabhan, R., Mongkolsuk, S. (1999).
    連結:
  75. Construction and characterization of regulated L-arabinose-inducible broad host range
    連結:
  76. Construction of improved Escherichia-Pseudomonas shuttle vectors derived from
    連結:
  77. (2002). Overexpression and purification of microbial pro-transglutaminase from
    連結:
  78. proteases. J Biosci Bioeng 94: 478-481.
    連結:
  79. (2000). Substrate specificity analysis of microbial transglutaminase using
    連結:
  80. Takahashi, N., Takahashi, Y., and Putnam, F. W. (1986). Primary structure of blood
    連結:
  81. coagulation factor XIIIa (fibrinoligase, transglutaminase) from human placenta. P Natl
    連結:
  82. Iwanaga, S., Ichinose, A., and Davie, E. (1993). Limulus hemocyte transglutaminase.
    連結:
  83. Purification and characterization of two cutinases from Alternaria brassicicola.
    連結:
  84. Physiol Mol Plant P 42: 205-220.
    連結:
  85. awamori. Appl Microbiol Biot 45: 755-763.
    連結:
  86. cutinase on the enzymatic shrink-resist finishing of wool fabrics. Enzyme Microrob
    連結:
  87. H. (2009). Scanning the Corynebacterium glutamicum R genome for high-efficiency
    連結:
  88. Wilhelm, B., Meinhardt, A., and Seitz, J. (1996). Transglutaminases: purification and
    連結:
  89. activity assays. J Chromatogr B 684: 163-177.
    連結:
  90. (2012). Enhancement of transglutaminase production in Streptomyces mobaraensis as
    連結:
  91. (2003). Activated transglutaminase from Streptomyces mobaraensis is processed by a
    連結:
  92. 白燿嘉 (2002). Streptomyces rectiverticillatus 轉麩氨醯胺酶基因之篩選與酵素特
  93. 性之研究,國立中興大學分子生物研究所碩士論文。
  94. 吳師誠 (2002). Streptomyces kentuckense 轉麩氨醯胺酶基因之篩選與酵素特性之
  95. 研究,國立中興大學分子生物研究所碩士論文。
  96. 陳宗愚 (2003). Streptomyces flavopericus 轉麩氨醯胺酶純化及特性分析及
  97. Streptomyces 轉麩氨醯胺酶在大腸菌之表現,國立中興大學分子生物研究所碩士
  98. 論文。
  99. 詹弘祥 (2005). 在大腸菌生產重組 Streptomyces 轉麩氨醯胺酶及重組酵素
  100. pro-pepetide 功能之探討,國立中興大學分子生物研究所碩士論文。
  101. 產具活性的重組酵素,國立中興大學分子生物研究所碩士論文。
  102. 陳晟,張芙華,陳堅,吳敬 (2010). 流加發酵對重组 Bacillus subtilis 發酵生產
  103. 角質酶的影響,中國生物工程雜誌 30: 62-66.
  104. 轉麩氨醯胺酶,國立中興大學分子生物研究所碩士論文。
  105. Streptomyces 轉麩氨醯胺酶,國立中興大學分子生物研究所碩士論文。
  106. 物研究所碩士論文。
  107. 張效寧,冉琴琴,張學俊 (2013). 角質酶的研究與應用進展。中國釀造雜誌 32:
  108. 11-17.
  109. 基因並於大腸桿菌進行表現及特性分析,國立中興大學分子生物研究所碩士論文。
  110. Ando, H., Adachi, M., Umeda, K., Matsuura, A., Nonaka, M., Uchio, R., Tanaka, H.,
  111. derived from microorganisms. Agric Biol Chem 53: 2613-2617.
  112. Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., Rasmussen, G.,
  113. Scheel, D., and Nürnberger, T. (2002). Pep‐13, a plant defense‐inducing pathogen‐
  114. associated pattern from Phytophthora transglutaminases. EMBO J 21: 6681-6688.
  115. Calado, C. R., Ferreira, B. S., and da Fonseca, M. M. (2004). Integration of the
  116. production and the purification processes of cutinase secreted by a recombinant
  117. Saccharomyces cerevisiae SU50 strain. J Biotechnol 109: 147-158.
  118. Calado, C. R., Mannesse, M., Egmond, M., Cabral, J., and Fonseca, L. P. (2002).
  119. Chen, S., Liu, Z., Chen, J., and Wu, J. (2011). Study on improvement of extracellular
  120. Chen, S., Tong, X., Woodard, R. W., Du, G. C., Wu, J., and Chen, J. (2008).
  121. Connellan, J. M., Chung, S., Whetzel, N. K., Bradley, L. M., and Folk, J. (1971).
  122. Cortez, J., Bonner, P. L., and Griffin, M. (2004). Application of transglutaminases in
  123. the modification of wool textiles. Enzyme Microrob Tech 34: 64-72.
  124. Cui, L., Zhang, D., Huang, L., Liu, H., Du, G., and Chen, J. (2006). Stabilization of a
  125. Dadabay, C.Y., and Pike, L. (1989). Purification and characterization of a cytosolic
  126. transglutaminase from a cultured human tumour-cell line. Biochem J 264: 679-685.
  127. Date, M., Yokoyama, K., Umezawa, Y., Matsui, H., and Kikuchi, Y. (2003). Production
  128. Date, M., Yokoyama, K., Umezawa, Y., Matsui, H., and Kikuchi, Y. (2004). High level
  129. glutamicum using a chimeric pro-region from Streptomyces cinnamoneus
  130. Della Mea, M., Caparrós-Ruiz, D., Claparols, I., Serafini-Fracassini, D., and Rigau, J.
  131. Dubbink, H. J., de Waal, L., van Haperen, R., Verkaik, N. S., Trapman, J., and Romijn,
  132. J. C. (1998). The human prostate-specific transglutaminase Gene (TGM4) : genomic
  133. organization, tissue-specific expression, and promoter characterization. Genomics 51:
  134. 434-444.
  135. Duran, R., Junqua, M., Schmitter, J., Gancet, C., and Goulas, P. (1998). Purification,
  136. cinnamoneum CBS 683.68. Biochimie 80: 313-319.
  137. 1015-1021.
  138. Ejima, D., Yokoyama, K. I., Kunio, O., Ohtsuka, T., Nakamura, N., Seguro, K. (2002).
  139. Faergemand, M., Murray, B. S., and Dickinson. E. (1997). Cross-linking of milk
  140. 2519.
  141. Ferreira, B., Calado, C., Van Keulen, F., Fonseca, L., Cabral, J., and Da Fonseca, M.
  142. (2003). Towards a cost effective strategy for cutinase production by a recombinant
  143. Saccharomyces cerevisiae: strain physiological aspects. Appl Microbiol Biot 61: 69-76.
  144. Fett, W., Wijey, C., Moreau, R., and Osman, S. (1999). Production of cutinase by
  145. Thermomonospora fusca ATCC 27730. J Appl Microbiol 86: 561-568.
  146. essential for activity. J Biol Chem 241: 5518-5525.
  147. Gerber, U., jucknischke, U., Putzein, S. and Fuchsbauer, H. L. (1994). A rapid and
  148. Gindro, K., and Pezet, R. (1999). Purification and characterization of a 40.8 kDa
  149. 171: 239-243.
  150. Greenberg, C. S., Birckbichler, P. J., and Rice, R. H. (1991). Transglutaminases:
  151. Hydrocolloids: Structure Properties and Functions. NY: Plenum Press.
  152. Ikura, K., Nasu, T., Yokota, H., Tsuchiya, Y., Sasaki, R., and Chiba, H. (1988). Amino
  153. Kang, I. J., Matsumura, Y., Ikura, K., Motoki, M., Sakamoto, H., and Mori, T. (1994).
  154. Kim, Y. H., Ahn, J. Y., Moon, S. H., and Lee, J. (2005). Biodegradation and
  155. Klein, J., Guzman, E., and Kuehn, G. (1992). Purification and partial characterization
  156. Kobayashi, K., Hashiguchi, K., Yokozeki, K., and Yamanaka, S. (1998). Molecular
  157. Expres Purif 68: 104-109.
  158. Lin, T., and Kolattukudy, P. E. (1980). Isolation and characterization of a cuticular
  159. polyester (cutin) hydrolyzing enzyme from phytopathogenic fungi. Physiol Plant
  160. Pathol 17: 1-15.
  161. J. and Zhou, Z. M. (2011). The pro-region of Streptomyces hygroscopicus
  162. transglutaminase affects its secretion by Escherichia coli. FEMS Microbiol Lett
  163. 324: 98-105.
  164. Liu, X., Yang, X., Xie, F., and Qian, S. (2006). Cloning of transglutaminase gene from
  165. 28: 1319-1325.
  166. Maeda, H., Yamagata, Y., Abe, K., Hasegawa, F., Machida, M., Ishioka, R., Gomi, K.,
  167. enzyme from Aspergillus oryzae. Appl Microbiol Biot 67: 778-788.
  168. applicable to foods. J Food Biochem 11: 309-327.
  169. Matsuki, M., Yamashita, F., Ishida-Yamamoto, A., Yamada, K., Kinoshita, C., Fushiki,
  170. S., Ueda, E., Morishima, Y., Tabata, K., and Yasuno, H. (1998). Defective stratum
  171. (keratinocyte transglutaminase). P Natl Acad Sci USA 95: 1044-1049.
  172. Murthy, S. P., and Lorand, L. (2000). Nucleotide binding by the erythrocyte
  173. 53Acad Sci USA 97: 7744-7747.
  174. Nonaka, M., Toiguchi, S., Sakamoto, H., Kawajiri, H., Soeda, T., and Motoki, M.
  175. thermally induced soy protein gels. Food hydrocolloid 8: 1-8.
  176. Nyyssölä, A., Pihlajaniemi, V., Häkkinen, M., Kontkanen, H., Saloheimo, M., and
  177. Motoki, M., Aso, H., Seguro, K., and Nio, N. (1987). Alpha-S1-casein film prepared
  178. using transglutaminase. Agric Biol Chem 51: 993-996.
  179. Parvaresh, F., Robert, H., Thomas, D., and Legoy, M. D. (1992). Gas phase
  180. 467-473.
  181. Piacentini, M., Fesus, L., Farrace, M., Ghibelli, L., Piredda, L., and Melino, G. (1991).
  182. Pocalyko, D. J., and Tallman, M. (1998). Effects of amphipaths on the activity and
  183. NY: Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
  184. Schwartz, M. L., Pizzo, S. V., Hill, R. L., and McKee, P. A. (1973). Human factor XIII
  185. from plasma and platelets molecular weights, subunit structures,proteolytic activation,
  186. Sebastian, J., Chandra, A., and Kolattukudy, P. (1987). Discovery of a cutinaseproducing
  187. Pseudomonas sp. cohabiting with an apparently nitrogen-fixing
  188. Corynebacterium sp. in the phyllosphere. J Bacteriol 169: 131-136.
  189. Seitz, J., Keppler, C., Hüntemann, S., Rausch, U., and Aumüller, G. (1991). Purification
  190. of the rat. BBA-Protein Struct M 1078: 139-146.
  191. Shayk, M., Kolattukudy, P., and Davis, R. (1977). Production of a novel extracellular
  192. cutinase by the pollen and the chemical composition and ultrastructure of the stigma
  193. Shishiyama, J., Araki, F., and Akai, S. (1970) Studies on cutin-esterase II.
  194. S?rensen, J. D., Petersen, E. I., and Wiebe, M. G. (2007). Production of Fusarium
  195. expression vectors in Xanthomonas. FEMS Microbiol Lett 181: 217-223
  196. Schweizer, H. P., Dall, C., Sample, A. K., West, S. E. M., Runyen-Janecky, L. J. (1993).
  197. pUC18/19 and sequence of the region required for their replication in Pseudomonas
  198. aeruginosa. Gene 148: 81-86.
  199. Taguchi, S., Arakawa, K., Yokoyama, K., Takehana, S., Takagi, H., and Momose, H.
  200. Streptomyces cinnamoneum and in vitro processing by Streptomyces albogriseolus
  201. Taguchi, S., Nishihama, K. I., Igi, K., Ito, K., Taira, H., Motoki, M., and Momose, H.
  202. proteinaceous protease inhibitors as natural model substrates. J Biochem (Tokyo) 128:
  203. 415-425.
  204. Acad Sci USA 83: 8019-8023.
  205. Tokunaga, F., Yamada, M., Miyata, T., Ding, Y., Hiranaga-Kawabata, M., Muta, T.,
  206. Its purification and characterization, and identification of the intracellular substrates. J
  207. Biol Chem 268: 252-261.
  208. Tsai, G., Lin, S., and Jiang, S. (1996). Transglutaminase from Streptoverticillium
  209. ladakanum and application to minced fish product. J Food Sci 61: 1234-1238.
  210. Trail, F., and Köller, W. (1993). Diversity of cutinases from plant pathogenic fungi:
  211. Van Gemeren, I., Beijersbergen, A., Musters, W., Gouka, R., Van den Hondel, C., and
  212. Verrips, C. (1996). The effect of pre-and pro-sequences and multicopy integration on
  213. heterologous expression of the Fusarium solani pisi cutinase gene in Aspergillus
  214. Wang, G. Y., Michailides, T. J., Hammock, B. D., Lee, Y. M., and Bostock, R. M.
  215. (2002). Molecular cloning, characterization, and expression of a redox-respons ive
  216. cutinase from Monilinia fructicola (Wint.) honey. Fungal Genet Biol 35: 261-276.
  217. Wang, P., Wang, Q., Fan, X., Cui, L., Yuan, J., Chen, S., and Wu, J. (2009). Effects of
  218. Tech 44: 302-308.
  219. Watanabe, K., Tsuchida, Y., Okibe, N., Teramoto, H., Suzuki, N., Inui, M., and Yukawa,
  220. secretion signal sequences. Microbiology 155: 741-750.
  221. Wu, J., Chen, J., Su, L. Q., and Woodard, R. W. (2013). Extracellular location of
  222. Thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3) without
  223. mediation of a signal peptide. Appl Environ Microb 79: 4192-4198.
  224. Zhang, L., Zhang, L., Han, X., Du, M., Zhang, Y., Feng, Z., Yi, H., and Zhang, Y.
  225. achieved by treatment with excessive MgCl2. Appl Microbiol Biot 93: 2335-2343.
  226. Zotzel, J., Pasternack, R., Pelzer, C., Ziegert, D., Mainusch, M., and Fuchsbauer, H. L.
  227. tripeptidyl aminopeptidase in the final step. Eur J Biochem 270: 4149-4155.
Times Cited
  1. 紀科衡(2017)。轉榖氨醯胺酵素(Transglutaminase)基因轉殖至水稻葉綠體之研究。中興大學園藝學系所學位論文。2017。1-189。