Title

不同界面活性劑對糖質克弗爾多醣/小麥澱粉可食膜物理性質的影響

Translated Titles

Effect of Surfactants on the Physical Properties of Sugary Kefir Polysaccharide/Wheat Starch Edible Films

DOI

10.6845/NCHU.2015.00468

Authors

方柏翔

Key Words

可食膜 ; 克弗爾 ; 克弗爾多醣 ; 小麥澱粉 ; 界面活性劑 ; Edible film ; Kefir ; Kefiran ; Wheat starch ; Surfactant

PublicationName

中興大學食品暨應用生物科技學系所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

賴麗旭

Content Language

繁體中文

Chinese Abstract

使用生物可分解材質製成的可食膜、可食塗層(edible films and coatings),是種能將食品包裹起來延長食品的保存期限亦可與食品一同食用的食品包裝。本研究探討糖質克弗爾多醣/小麥澱粉可食膜加入不同種類及濃度的界面活性劑,對於糖質克弗爾多醣/小麥澱粉可食膜的外觀、水氣阻隔性、物理性質等影響。使用的界面活性劑包含2-6%的Glycerol monostearate (GMS)、Span 80、Sucrose ester S-770、Sucrose ester S-1170、Sucrose ester S-1570 (HLB值分別為3.8、4.3、7、11、15),並與未添加界面活性劑者(控制組)比較。實驗結果顯示,隨著界面活性劑濃度的上升,可食膜的厚度亦會隨之增加;在親水性相關試驗中,GMS具有降低親水性的效果,S-1170、S-1570則增加親水性;水氣阻隔性試驗除了Span80外其它界面活性劑皆有提高阻隔水氣之效果,其中又以6% GMS最為顯著;微結構觀察得出界面活性劑的添加對於可食膜斷面產生層狀結構的增加;在穿刺以及拉伸性質試驗,隨界面活性劑濃度的上升,可食膜的機械強度均隨之降低,推測此結果與改變多醣和澱粉間的立體網狀結構有關。

English Abstract

Edible films and coatings made of biodegradable material can be used to package food products and extend their shelf life. Moreover, those films and coatings can be consumed together with foods. Ingredients of edible film include carbohydrate, protein and lipid, which could be obtained from agricultural resources rather than limited petrochemical material. The objective of this research is to study the effect of different types and concentrations of surfactants on the appearance, water vapor permeability, and physical properties of sugary kefir polysaccharide/wheat starch edible films. Increasing the concentration of added surfactant generally increased the thickness of sugary kefir polysaccharide/wheat starch (KS) edible films. Water vapor permeability results revealed that except for the group with Span 80, the water barrier characteristics of KS films were all enhanced by increasing surfactant concentration. The group with 6% Glycerol monostearate (GMS) showed the best water barrier characteristics among . However, the mechanical strength such as tensile and puncture strength was reduced significantly by the addition of surfactants. SEM micrographs showed that adding more surfactant resulted in more uneven and stratified cross-sectional structure. Such results may possibly related to the influence of polysaccharide-starch interaction, and the formation of three-dimensional network structure between polysaccharides and starch.

Topic Category 農業暨自然資源學院 > 食品暨應用生物科技學系所
生物農學 > 生物科學
Reference
  1. 陳建賢(2009) 脫色仙草膠對樹薯澱粉可食膜物性之影響。國立中興大學食品暨應用生物科技學系博士論文,台中,臺灣
    連結:
  2. 吳宛諭(2010) 不同界面活性劑對樹薯澱粉/脫色仙草葉膠可食性薄膜的物性影響。國立中興大學食品暨應用生物科技學系碩士論文,台中,臺灣
    連結:
  3. 林詩涵(2014) 以反應曲面法探討糖質克弗爾多醣/小麥澱粉混合膜之物理及機械特性。國立中興大學食品暨應用生物科技學系碩士論文,台中,臺灣
    連結:
  4. Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2002). Moisture sorption isotherm characteristics of food products: a review. Food and Bioproducts Processing, 80(2), 118-128.
    連結:
  5. Alves, V. D., Ferreira, A. R., Costa, N., Freitas, F., Reis, M. A. M., & Coelhoso, I. M. (2011). Characterization of biodegradable films from the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydrate Polymers, 83(4), 1582-1590.
    連結:
  6. Andreuccetti, C., Carvalho, R. A., Galicia-García, T., Martínez-Bustos, F., & Grosso, C. R. F. (2011). Effect of surfactants on the functional properties of gelatin-based edible films. Journal of Food Engineering, 103(2), 129-136.
    連結:
  7. Andreuccetti, C., Carvalho, R. A., & Grosso, C. R. F. (2010). Gelatin-based films containing hydrophobic plasticizers and saponin from Yucca schidigera as the surfactant. Food Research International, 43(6), 1710-1718.
    連結:
  8. Andreuccetti, C., Carvalho, R. A., & Grosso, C. R. F. (2009). Effect of hydrophobic plasticizers on functional properties of gelatin-based films. Food Research International, 42(8), 1113-1121.
    連結:
  9. Araujo-Farro, P. C., Podadera, G., Sobral, P. J. A., & Menegalli, F. C. (2010). Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydrate Polymers, 81(4), 839-848.
    連結:
  10. Arık Kibar, E. A., & Us, F. (2013). Thermal, mechanical and water adsorption properties of corn starch–carboxymethylcellulose/methylcellulose biodegradable films. Journal of Food Engineering, 114(1), 123-131.
    連結:
  11. Arnon, H., Granit, R., Porat, R., & Poverenov, E. (2015). Development of polysaccharides-based edible coatings for citrus fruits: A layer-by-layer approach. Food Chemistry, 166, 465-472.
    連結:
  12. ASTM (2000). Standard test methods for water vapour transmission of materials, method E 96-00. Annual book of ASTM standards. Philadelphia, PA: American Society for Testing and Materials.
    連結:
  13. Bensmira, M., Nsabimana, C., & Jiang, B. (2010). Effects of fermentation conditions and homogenization pressure on the rheological properties of Kefir. LWT - Food Science and Technology, 43(8), 1180-1184.
    連結:
  14. Bilbao-Sáinz, C., Avena-Bustillos, R. J., Wood, D. F., Williams, T. G., & McHugh, T. H. (2010). Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. Journal of Agricultural and Food Chemistry, 58(6), 3753-3760.
    連結:
  15. Blahovec, J. (2004). Sorption isotherms in materials of biological origin mathematical and physical approach. Journal of Food Engineering, 65(4), 489-495.
    連結:
  16. Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering, 114(3), 303-312.
    連結:
  17. Chen, C.-H., Kuo, W.-S., & Lai, L.-S. (2009). Effect of surfactants on water barrier and physical properties of tapioca starch/decolorized hsian-tsao leaf gum films. Food Hydrocolloids, 23(3), 714-721.
    連結:
  18. Chick, J., & Ustunol, Z. (1998). Mechanical and barrier properties of lactic acid and rennet precipitated casein-based edible films. Journal of Food Science, 63, 1024-1027.
    連結:
  19. Debeaufort, F., Quezada-Gallo, J.-A., Delporte, B., & Voilley, A. (2000). Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. Journal of Membrane Science, 180(1), 47-55.
    連結:
  20. Debeaufort, F., Quezada-Gallo, J.-A., & Voilley, A. (1998). Edible Films and Coatings: Tomorrow's Packagings: A Review. Critical Reviews in Food Science and Nutrition, 38(4), 299-313.
    連結:
  21. Dick, M., Costa, T. M. H., Gomaa, A., Subirade, M., Rios, A. d. O., & Flôres, S. H. (2015). Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydrate Polymers, 130, 198-205.
    連結:
  22. Embuscado, M. E., & Huber, K. C. (2009). Edible films and coatings for food applications. Berlin, Heidelberg : Springer.
    連結:
  23. Ghasemlou, M., Khodaiyan, F., Jahanbin, K., Gharibzahedi, S. M. T., & Taheri, S. (2012). Structural investigation and response surface optimisation for improvement of kefiran production yield from a low-cost culture medium. Food Chemistry, 133(2), 383-389.
    連結:
  24. Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011a). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers, 84(1), 477-483.
    連結:
  25. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011b). Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. Int J Biol Macromol, 49(3), 378-384.
    連結:
  26. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011c). Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chemistry, 127(4), 1496-1502.
    連結:
  27. Gontard, N., Guilbert, S., & Cuq, J. L. (1992). Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of Food Science, 57(1), 190-195.
    連結:
  28. Haq, M. A., Hasnain, A., & Azam, M. (2014). Characterization of edible gum cordia film: Effects of plasticizers. LWT - Food Science and Technology, 55(1), 163-169.
    連結:
  29. Hazaveh, P., Mohammadi Nafchi, A., & Abbaspour, H. (2015). The effects of sugars on moisture sorption isotherm and functional properties of cold water fish gelatin films. International Journal of Biological Macromolecules, 79, 370-376.
    連結:
  30. Horisberger, M. (1969). Structure of the dextran of the Tibi grain. Carbohydrate Research, 10(3), 379-385.
    連結:
  31. Jo, H.-J., Park, K.-M., Na, J. H., Min, S. C., Park, K. H., Chang, P.-S., & Han, J. (2015). Development of anti-insect food packaging film containing a polyvinyl alcohol and cinnamon oil emulsion at a pilot plant scale. Journal of Stored Products Research, 61, 114-118.
    連結:
  32. Jones, D. M., & Huck, W. T. (2001). Controlled Surface‐Initiated Polymerizations in Aqueous Media. Advanced Materials, 13(16), 1256-1259.
    連結:
  33. Karbowiak, T., Debeaufort, F., & Voilley, A. (2007). Influence of thermal process on structure and functional properties of emulsion-based edible films. Food Hydrocolloids, 21(5–6), 879-888.
    連結:
  34. Khazaei, N., Esmaiili, M., Djomeh, Z. E., Ghasemlou, M., & Jouki, M. (2014). Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydrate Polymers, 102, 199-206.
    連結:
  35. Kokoszka, S., Debeaufort, F., Hambleton, A., Lenart, A., & Voilley, A. (2010). Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films. Innovative Food Science & Emerging Technologies, 11(3), 503-510.
    連結:
  36. Kolybaba, M., Tabil, L. G., Panigrahi, S., Crerar, W. J., Powell, T., & Wang, B. (2003). Biodegradable polymers: past, present, and future. In An ASAE Meeting Presentation.
    連結:
  37. Kurt, A., & Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104, 50-58.
    連結:
  38. Li, X., & Liu, Y. (2009). Contact Angle Model and Wettability on the Surfaces with Microstructures. Materials Review, 24, 033.
    連結:
  39. Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328-1333.
    連結:
  40. Maran, J. P., Sivakumar, V., Sridhar, R., & Thirugnanasambandham, K. (2013). Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydrate Polymers, 92(2), 1335-1347.
    連結:
  41. Micheli, L., Uccelletti, D., Palleschi, C., & Crescenzi, V. (1999). Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Applied Microbiology and Biotechnology, 53(1), 69-74.
    連結:
  42. Mir, M. A., & Nath, N. (1995). Sorption isotherms of fortified mango bars. Journal of Food Engineering, 25(1), 141-150.
    連結:
  43. Motedayen, A. A., Khodaiyan, F., & Salehi, E. A. (2013). Development and characterisation of composite films made of kefiran and starch. Food Chemistry, 136(3-4), 1231-1238.
    連結:
  44. Peressini, D., Bravin, B., Lapasin, R., Rizzotti, C., & Sensidoni, A. (2003). Starch–methylcellulose based edible films: rheological properties of film-forming dispersions. Journal of Food Engineering, 59(1), 25-32.
    連結:
  45. Piermaria, J. A., de la Canal, M. L., & Abraham, A. G. (2008). Gelling properties of kefiran, a food-grade polysaccharide obtained from kefir grain. Food Hydrocolloids, 22(8), 1520-1527.
    連結:
  46. Piermaria, J. A., Pinotti, A., Garcia, M. A., & Abraham, A. G. (2009). Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food Hydrocolloids, 23(3), 684-690.
    連結:
  47. Razavi, S. M. A., Mohammad Amini, A., & Zahedi, Y. (2015). Characterisation of a new biodegradable edible film based on sage seed gum: Influence of plasticiser type and concentration. Food Hydrocolloids, 43(0), 290-298.
    連結:
  48. Rodríguez, M., Osés, J., Ziani, K., & Maté, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840-846.
    連結:
  49. Serafini, F., Turroni, F., Ruas-Madiedo, P., Lugli, G. A., Milani, C., Duranti, S., . . . Ventura, M. (2014). Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. International Journal of Food Microbiology, 178, 50-59.
    連結:
  50. Shih, F. F., Daigle, K. W., & Champagne, E. T. (2011). Effect of rice wax on water vapour permeability and sorption properties of edible pullulan films. Food Chemistry, 127(1), 118-121.
    連結:
  51. Sung, Y. H., Kim, Y. D., Choi, H.-J., Shin, R., Kang, S., & Lee, H. (2015). Fabrication of superhydrophobic surfaces with nano-in-micro structures using UV-nanoimprint lithography and thermal shrinkage films. Applied Surface Science, 349, 169-173.
    連結:
  52. Villalobos, R., Hernández-Muñoz, P., & Chiralt, A. (2006). Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films. Food Hydrocolloids, 20(4), 502-509.
    連結:
  53. Wang, S. Y., Chen, H. C., Liu, J. R., Lin, Y. C., & Chen, M. J. (2008). Identification of Yeasts and Evaluation of their Distribution in Taiwanese Kefir and Viili Starters. Journal of Dairy Science, 91(10), 3798-3805.
    連結:
  54. Zhang, B.-Z., Inngjerdingen, K. T., Zou, Y.-F., Rise, F., Michaelsen, T. E., Yan, P.-S., & Paulsen, B. S. (2014). Characterisation and immunomodulating activities of exo-polysaccharides from submerged cultivation of Hypsizigus marmoreus. Food Chemistry, 163(0), 120-128.
    連結:
  55. Zolfi, M., Khodaiyan, F., Mousavi, M., & Hashemi, M. (2014). The improvement of characteristics of biodegradable films made from kefiran–whey protein by nanoparticle incorporation. Carbohydrate Polymers, 109, 118-125.
    連結:
  56. 黃義承(2012) 黑糖液克弗爾顆粒的增量與利用其分離菌株PU01生產多醣。靜宜大學食品營養學系碩士論文,台中,臺灣
  57. Baldwin, E. A., & Hagenmaier, R. (2012). Chapter 1 - Introduction. In Baldwin, E. A., Hagenmaier, R. & Bai, J. (Ed.), Edible coatings and films to improve food quality (Second Edition), 1-12. Boca Raton, Florida : CRC Press
  58. Bourtoom, T. (2009). Edible protein films: properties enhancement. International Food Research Journal, 16(1), 1-9.
  59. Donhowe, I. G., & Fennema, O. (1994). Chapter 1 - Edible films and coatings: Characteristics, formation, definitions, and testing methods. In Baldwin, E. A., Hagenmaier, R., Bai, J. & Krochta, J. M. (Ed.), Edible coatings and films to improve food quality, 1-21. Boca Raton, Florida : CRC Press
  60. Giavasis, I. (2013). Chapter 16 - Production of microbial polysaccharides for use in food. In B. McNeil, D. Archer, I. Giavasis & L. Harvey (Eds.), Microbial Production of Food Ingredients, Enzymes and Nutraceuticals, 413-468. Sawston, Cambridge : Woodhead Publishing.
  61. Han, J. H. (2014a). Chapter 1 - A review of food packaging technologies and innovations. In Han, J. H. (Ed.), Innovations in Food Packaging (Second Edition), 3-12. San Diego: Academic Press.
  62. Han, J. H. (2014b). Chapter 9 - Edible films and coatings: A review. In J. H. Han (Ed.), Innovations in Food Packaging (Second Edition), 213-255. San Diego: Academic Press.
  63. Hasenhuettl, G. L. (2013). Chapter 1 – Overview of food emulsifiers. In Hasenhuettl, G. L. & Hartel, R. W. (Ed.), Food emulsifiers and their applications,1-10. Berlin, Heidelberg : Springer.
  64. Lacroix, M., & Vu, K. D. (2014). Chapter 11 - Edible coating and film materials: Proteins. In Han, J. H. (Ed.), Innovations in Food Packaging (Second Edition), 277-304. San Diego: Academic Press.
  65. Pérez-Gago, M. B., & Rhim, J.-W. (2014). Chapter 13 - Edible coating and film materials: Lipid bilayers and lipid emulsions. In J. H. Han (Ed.), Innovations in Food Packaging (Second Edition), 325-350. San Diego: Academic Press.
  66. Shaw, D. J. (1992). Introduction to Colloid and Surface Chemistr. Waltham, Massachusettsy: Butterworth-Heinemann.
  67. Shuai Cheng, D. Y., and Zhang Xiangjun. (2007). Study of the Influence of Apparent Contact Angle on Regular Rough Surface Considering Liquid Wetting Properties. Mechanical Science and Technology for Aerospace Engineering, 26(7), 822-827.
  68. Skurtys, O., Acevedo, C., Pedreschi, F., Enrione, J., Osorio, F., & Aguilera, J. (2010). Food Hydrocolloid Edible Films and Coatings. Hauppauge, New York: Nova Science Publishers.
  69. Sothornvit, R., & Krochta, J. M. (2005). Chapter 23 - Plasticizers in edible films and coatings. In J. H. Han (Ed.), Innovations in Food Packaging, 403-433. London: Academic Press.
  70. Wani, A. A., Singh, P., & Langowski, H. C. (2014). Food Technologies: Packaging. In Y. Motarjemi (Ed.), Encyclopedia of Food Safety, 211-218. Waltham: Academic Press.
  71. Zhao, Y. (2012). Chapter 10 - Application of commercial coatings. In Baldwin, E. A., Hagenmaier, R. & Bai, J. (Ed.), Edible coatings and films to improve food quality (Second Edition), 319-332. Boca Raton, Florida : CRC Press.
  72. Zhu, Z. (2014). Hydrophilicity, wettability and contact angle. Membrane Science and Technology (2), 1-4.
Times Cited
  1. 許進豐(2017)。以超音波結合酵素輔助萃取柚子種籽黏質及其理化性質之探討。中興大學食品暨應用生物科技學系所學位論文。2017。1-130。
  2. 呂彥勳(2017)。澱粉及塑化劑種類對糖質克弗爾多醣/澱粉可食膜物理性質之影響。中興大學食品暨應用生物科技學系所學位論文。2017。1-132。