Title

脫色仙草葉膠對樹薯澱粉可食膜物性之影響

Translated Titles

Effect of decolorized hsian-tsao leaf gum on the physical properties of tapioca starch-based edible films

DOI

10.6845/NCHU.2009.00467

Authors

陳健賢

Key Words

樹薯澱粉 ; 脫色仙草葉膠 ; 可食膜 ; 可食膜塗佈 ; 界面活性劑 ; 水氣阻隔性 ; 物理特性 ; 抗菌性 ; 草莓 ; decolorized hsian-tsao leaf gum ; tapioca starch ; surfactant ; edible films ; edible coating ; water vapor permeability ; physical properties ; antibacterial ; strawberry

PublicationName

中興大學食品暨應用生物科技學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

博士

Advisor

賴麗旭

Content Language

繁體中文

Chinese Abstract

本研究之目的為探討澱粉/脫色仙葉膠(澱粉/dHG)可食膜的流變特性、機械強度、水氣阻隔、抗菌等等特性及澱粉/dHG可食膜在草莓塗佈的應用。因此,分為四階段五部分,系統化的評估脫色仙草葉膠應用於澱粉可食膜之可行性。第一階段中樹薯澱粉與脫色仙草葉膠以不同比例配製成總固形份為2%的可食膜溶液,加入固形份量的15¬-40%的甘油,以鑄膜法(casting)製得可食膜。研究結果發現,隨著脫色仙草葉膠的添加及濃度增加,澱粉/dHG可食膜溶液的黏度、貯存模量(storage modulus, G’)、及損失模量(loss modulus, G”)增加,而相角正切(tanδ)則減少。澱粉/dHG可食膜的穿刺強度、抗張強度、抗張模量及應力鬆弛係數的倒數,隨脫色仙草葉膠濃度增加而增加,而穿刺變形量、依順值(compliance)、及抗張變形量則減少。此結果顯示, 脫色仙草葉膠與樹薯澱粉之間的交互作用產生新的網狀結構能增進澱粉/dHG可食膜的機械物性。甘油含量增加,則澱粉/dHG可食膜的機械強度降低而水氣透過性增加。澱粉/dHG可食膜具低的不透明度值。SEM及X-ray繞射分析顯示,所有的澱粉/dHG可食膜樣品具均質及高度非結晶結構。等溫吸濕曲線結果顯示,當水活性高於0.75, 可食膜的平衡水分含量顯著上升,且隨甘油及脫色仙草葉膠濃度增加而增加,但脫色仙草葉膠的影響較小。 第二階段進一步的加入蔗糖酯界面活性劑以改善澱粉/dHG的水氣阻隔性。可分為兩部份,一為使用界面活性劑以乳化形式,另一則為雙層可食膜的形式。結果發現加入蔗糖酯之乳化膜,顯著地增加澱粉/dHG可食膜之水氣阻隔性,及降低可食膜的抗張強度及抗張變形量。澱粉/dHG /surfactant乳化的複合可食膜的掃瞄式電子顯微鏡顯示,相較於控制組的均勻結構,乳化的複合可食膜則出現多層狀的微結構。雖澱粉/dHG /surfactant複合可食膜的不透明度較控制組高,但仍具良好的透明度。另一方面,添加界面活性劑及beewax的澱粉/dHG樹薯乳化膜,其機械強度減低,且不透明度顯著地增加,而水氣阻隔性並無表現較佳的改善。澱粉/dHG單層膜及加上界面活性劑層而成的雙層膜較乳化膜具更高的水氣阻隔性及抗張強度及破裂點伸長率。因此在雙層膜中,連續的界面活性劑層結構將能夠更有效的阻隔水氣的透過,且不影響澱粉/dHG層的機械強度。 第三階段在可食膜配方中加入抗菌劑己二烯酸鉀及百里香粗萃物,並探討澱粉/dHG可食膜的抗菌性及物理特性。結果發現己二烯酸鉀澱粉/dHG可食膜覆蓋處理並無顯著的降低李斯特菌數。然而,百里香乙醇粗萃物澱粉/dHG 可食膜對李斯特菌具顯著的靜菌作用。可食膜的微結構因抗菌劑的加入而改變,並有較高的平衡水含量。澱粉/dHG可食膜的抗張強度及抗張模量一般而言隨著添加抗菌劑濃度的增加而減少。添加己二烯酸鉀對澱粉/dHG可食膜的L、a、b值沒有顯著的影響,但添加百里香乙醇粗萃物則有顯著的影響。 第四階段將澱粉/dHG可食膜塗佈(edible coating)於草莓,探討對其品質之影響。結果顯示,在低濕度(30% RH)貯存下,草莓樣品的失重嚴重,使用澱粉/dHG可食膜塗佈處理可有效減少失重,並以界面活性劑與澱粉/dHG雙層膜處理者最好。在高濕度貯存下,全部樣品的失重皆降低。草莓經可食膜塗佈處理形成的薄膜具水氣及氣體阻隔性,降低了對草莓呼吸所需氣體供應,使呼吸速率降低、草莓果實內部的氧氣濃度降低、二氧化碳濃度增加、及較高的乙醇濃度。在30% RH貯存下,控制組與乳化膜塗佈處理者的可滴定酸及可溶性固形份變化,一般而言隨貯存期增加,呈增加的趨勢。雙層膜塗佈處理者的硬度高於控制組與乳化膜塗佈處理者。感官品評分析結果顯示在低濕度貯存下,草莓的外觀品質如飽滿度、光澤度、硬度下降,以可食膜處理則有明顯改善。控制組具有較高的草莓香味、發酵味的氣味評分,可能是塗佈處理阻隔了草莓的氣味分子所致。在風味之發酵味評分方面,一般而言雙層膜塗佈處理者高於控制組及乳化膜處理者。

English Abstract

The objectives of this research were to investigate the rheological, mechanical, antibacterial properties and water vapor barrier property of the starch/decolorized hsian-tsao leaf gum (dHG) films and coating for strawberry. Edible film-forming solutions were prepared by mixing tapioca starch with dHG at different starch/dHG ratios to make a total solid content of 2%. 15 to 40% glycerol was then added based on the dry film matter. As compared to film-forming solutions with tapioca starch alone, the apparent viscosity, storage modulus and loss modulus of starch/dHG film-forming solutions increased, and tanδ decreased with increasing dHG. Starch/dHG films were obtained by casting. It was found that the puncture strength, tensile strength and modulus as well as the inverse of relaxation coefficient of starch/dHG films pronouncedly increased with increasing dHG, accompanied with a decreasing tendency in puncture deformation, extensional creep compliance, retardation time and tensile strain at break. Such results implied that starch interacted with dHG synergistically, resulting in the formation of new network to improve the mechanical properties of tapioca starch/dHG films. Mechanical strengths of starch/dHG films decreased and water vapor permeability (WVP) increased with increasing glycerol concentration. All starch/dHG films showed relatively low opacity values. SEM (Scanning electron micrographs) and X-ray diffraction analysis revealed that all starch/dHG films exhibited homogeneous and highly amorphous structure. Water sorption isotherm results indicated that significant water sorption would only occur at high water activity (about 0.75), and generally became more pronounced with increasing glycerol and dHG concentration, but to a lesser extent for the latter. Secondly, the objective is to enhance the water barrier properties of tapioca starch/dHG edible films by emulsion or lamination with sucrose ester surfactants. It was found that the water barrier property of starch/dHG films is promoted significantly with surfactant by emulsion; alongside a decreasing tendency in tensile strength and tensile strain at break. SEM of the starch/dHG/surfactant composite films revealed the folded (multi-layer) microstructure in contrast to the homogeneous matrix of the control films. Starch/dHG/surfactant composite films show low opacity value. On the other hand, starch/dHG composite film with an emulsion of surfactant and beeswax showed lower mechanical strength and significantly higher opacity value with less improvement on water vapor permeability. Moreover, it was found that the WVP of tapioca starch /dHG film pronouncedly decreased by the aid of a surfactant layer lamination. When compared to emulsion-based starch/dHG films with surfactant, the surfactant laminated starch/dHG films showed higher water barrier property, mechanical strength, and transparency. Thirdly, the antibacterial and physical properties of starch/dHG films with various antimicrobial type and concentration were investigated. It was found that the starch/dHG films with potassium sorbate did not show inhibition against the growth of Listeria monocytogenes, but starch/dHG films with extractive thyme did. The microstructure of starch/dHG films was modified with antimicrobial, and mechanical strength decreased with increasing concentration of antimicrobial generally. Hunter L, a, and b color value of starch/dHG films did not show significant difference with potassium sorbate, however, with extractive thyme, the hunter L, a, and b color value of starch/dHG films showed significant difference and light green-yellow. Finally, the effect of starch/dHG edible coating on properties of strawberry was investigated. The weight loss of control was significant during storage at 5 °C, 30% RH, nevertheless, by the aid of edible coating the weight loss of strawberry decreased significantly, specifically by bilayer coating. Moreover, stored with saturated vapor, the weight loss of all was improved. Results also showed that the respiration rate and internal O2 of strawberry decreased, and internal CO2 and ethanol concentration increased by edible coating. The titratable acidity and soluble solid generally increased for control strawberries and emulsion coating during storage at 5 °C, 30% RH. The hardness of strawberry coated with bilayer was higher than control and emulsion coating. Results of sensory test showed that the quality of appearance such as fullness, gloss and hardness scores decreased during storage, and by the aid of bilayer coating the quality of appearance was improved. The control showed higher strawberry and fermentative odor scores than that of sample with coating, and possibly the odor molecular was cut off by edible coating. Bilayer coating sample generally showed generally higher scores of fermentative flavor compared to that of control and emulsion coating.

Topic Category 農業暨自然資源學院 > 食品暨應用生物科技學系所
生物農學 > 生物科學
Reference
  1. 胡敏夫、林禮輝:仙草不同生長期之主成分含量分析。中華農學研究35:180-85(1986)。
    連結:
  2. 陳靖儒:百香果貯藏技術之研究。國立中興大學園藝學系碩士論文,台中,台灣(2006)。
    連結:
  3. 黃仲彥:脫澀後柿果低溫貯藏之研究。國立中興大學園藝學系碩士論文,台中,台灣 (2006)。
    連結:
  4. A.O.A.C. (2000). Official Methods of Analsis, 17th Edition. Association of Analytical Chemists. Washington, D. C., USA
    連結:
  5. ASTM. (2000b). Stand test methods for water vapor transmission of materials, method E 96-00. Philadelphia, PA: American Society for Testing and Materials.
    連結:
  6. Ayranci, E., & Tunc, S. (2004). The effect of edible coatings on water and vitamin C loss of apricots (Armeniaca vulgaris Lam.) and green peppers (Capsicum annuum L.). Food Chemistry, 87: 339-342.
    連結:
  7. Banks, N. H. 1984 . Some effects of TAL pro-long coating on ripening of bananas. Journal of Experimental Botany, 35: 127-137.
    連結:
  8. Bergo, P. V. A., Carvalho, R. A., Sobral, P. J. A., Santos, R. M. C., Silva, F. B. R., Prison, J. M., Solorza-Feria, J., & Habitante, A. M. Q. B. (2008). Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packaging Technology & Science, 21, 85-89.
    連結:
  9. Bitter, T., & Muir, H. M. A modified uronic acid carbazole reaction. Analytical Biochemistry. 4: 330-334.
    連結:
  10. Bonacucina, G., Martino, P. D., Piombetti, Martina., Colombo, A., Roversi F., & Palmieri, Giovanni. (2006). Effect of plasticizers on properties of pregelatinised starch acetate (Amprac 01) free films. International Journal of Pharmaceutics, 313, 72-77.
    連結:
  11. Cairns, P., Miles, M. J., Morris, V. J., & Brownsey, G. J. 1987. X-ray fiber-diffraction studies of synergistic, binary polysaccharide gels. Carbohydrate Research, 160: 411-423.
    連結:
  12. Chandra, P. K., Sobral, P. J. D. A (2000). Calculation of viscoelastic properties of edible films: application of three models. Ciência e Tecnologia de Alimentos, 20 (2), 250-256.
    連結:
  13. Chang, Y. P., Karim, A. A., & Seow, C. C. 2006. Interactive plasticizing-anti plasticizing effects of water and glycerol on the tensile properties of tapioca starch films. Food Hydrocolloids, 20: 1-8.
    連結:
  14. Chien, P. J., Sheu, F., & Yang, F. H. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering, 78, 225-229.
    連結:
  15. Chinnan, M. S., & Park, H. J. 1995. Effect of plasticizer level and temperature on water transmission of cellulose-based edible films. Journal of Food Process Engineering, 18: 417-429.
    連結:
  16. Cuq, B., Aymard, C., Cuq, J., & Guilbert, S. 1995. Edible packaging films based on fish myofibrillar proteins: formation and functional properties. Journal of Food Science, 60: 1369-1374.
    連結:
  17. Cuq, B., Gontard, N., & Guilbert, S. 1998. Protein as agricultural polymers for packaging production. Cereal Chemistry. 75: 1-9.
    連結:
  18. Debeaufort, F., Martin-Polo, M., & Voilley, A. (1993). Polarity homogeneity and structure affect water vapor permeability of model edible films. Journal of Food Science, 58, 426-429, 434.
    連結:
  19. Debeaufort, F., Voilley, A., & Meares, P. (1994). Water vapor permeability and diffusivity through methylcellulose edible films. Journal of Membrane Science, 91, 125-133.
    連結:
  20. Debeaufort, F., & Voilley, A. (1995). Effect of surfactants and drying rate on barrier properties of emulsified edible films. Int. Journal of Food Science and Technology, 30: 183-190.
    連結:
  21. Debeaufort, F., & Voilley, A. (1997). Methylcellulose-baesd edible films and coatings: Mechanical and thermal properties as a function of plastizer content. Journal of Agricultural and Food Chemistry, 45: 685-689.
    連結:
  22. Debeaufort, F., Quezada-Gallo, J. A., & Voilley, A. (1998). Edible films and coatings: tomorrow’s packagings: a review. Critical Reviews in Food Science, 38(4): 299-313.
    連結:
  23. Debeaufort, F., Quezada-Gallo, J. A., Delporte, B., & Voilley, A. (2000). Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. Journal of Membrane Science, 180: 47-55.
    連結:
  24. Del-Valle, V., Hernández-Munoz, P., Guarda, A., & Galotto, M. J. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus indica ) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry, 91, 751-756.
    連結:
  25. Dimantov, A., Greenberg, M., Kesselman, E., & Shimoni, E. (2004). Study of high amylose corn starch as food grade enteric coating in a microcapsule model system. Innovative Food Science & Emerging Technologies, 5: 93-100.
    連結:
  26. Doubis, M., Gilles, k. A., Revers, A. P. & Smith, F. (1956). Calorimetric method for determination of sugars and related substance. Analytical Chemistry, 28, 350-356.
    連結:
  27. Durango, A. M., Soares, N. F. F., & Andrade, N. J. (2006). Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control, 17: 336-341.
    連結:
  28. Eidam, D., & Kulicke, W. M. (1995). Formation of maize starch gels selectively regulated by the addition of hydrocolloids. Starch/Starke, 47(10): 378-384.
    連結:
  29. Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. (2005). Mechanical properties of tapioca-starch edible films containing sorbates. Lebensmittel Wissenschaft and Technologie, 38, 631-639.
    連結:
  30. Fanta, G. F., Shogren, R. L., & Salch, J. H. (1999). Steam jet cooking of high-amylose starch-fatty acid mixture. An investigation of complex formation. Carbohydrate Polymers, 38, 1-6.
    連結:
  31. Fishman, M. L., Coffin, D. R., Konstance, R. P., & Onwulata, C. I. (2000). Extrusion of pectin/starch blends plasticized with glycerol. Carbohydrate Polymers, 41, 317-325.
    連結:
  32. Flores, S., Famá, L., Rojas, A. M., Goyanes, S., & Gerschenson, L. (2007). Physical properties of tapioca-starch edible films: influence of filmmaking and potassium sorbate. Food Research International, 40, 257-265.
    連結:
  33. Gallo, J. A. Q., Debeaufort, F., Callegarin, F., & Voilley, A. (2000). Lipid hydrophobicity, physical state and distribution effects on the properties of emulsion-based edible films. Journal of Membrane Science, 180: 37-46.
    連結:
  34. García, M. A., Martino, M. N., & Zaritzky N. E. (1999). Edible starch films and coatings characterization: scanning electron microscopy, water vapor transmission and gas permeabilities. Scanning, 21(5): 348-353.
    連結:
  35. García, M. A., Martino, M. N., & Zaritzky N. E. (2000). Microstructural characterization of plasticized starch-based films. Starch/Stärke, 52(4): 118-124.
    連結:
  36. Geraldine, R. M., Soares, N. F. F., Botrel, D. A., & Gonçalves, L. A. (2008). Characterization and effect of edible coating on minimally processed garlic quality. Carbohydrate Polymers, 72, 403-409.
    連結:
  37. Gontard, N., Guilbert, S., & Cuq, J. L. (1992). Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of Food Science, 57, 190-195,199.
    連結:
  38. Gontard, N., Guilbert, S., & Cuq, J. L. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 58: 206-211.
    連結:
  39. Gontard, N., Juchez, C., Cuq, J. L., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapor permeability and other physical properties. Internation Journal of Food Science and Technology, 29: 39-50.
    連結:
  40. Habitante, A. M. B. Q., Sorbral, P. J. A., Carvalho, R. A., Solorza-Feria, J.,& Bergo, P. V. A. (2008). Phase transitions of cassava starch dispersions prepared with glycerol solutions. Journal of Thermal Analysis and Calorimetry, 93, 599-604.
    連結:
  41. Kamper, S. L., & Fennema, O. R. (1984). Water vapor permeability of edible bilayer films. Journal of Food Science, 49: 1478-1481, 1485.
    連結:
  42. Karbowiak, T., Debeaufort, F., & Voilley, A. (2007). Influence of thermal process on structure and functional properties of emulsion-based edible films. Food Hydrocolloids, 21, 879-888.
    連結:
  43. Kasapis, S. (2006b). Definition and applications of the network glass transition temperature. Food Hydrocolloids, 20, 218-228.
    連結:
  44. Kristo, E., Biliaderis, C. G., & Zampraka, A. (2007). Water vapour barrier and tensile properties of composite caseinate-pullulate films: Biopolymer composition effects and impact of beeswax lamination. Food Chemistry, 101, 753-764.
    連結:
  45. Kristo, E., Koutsoumanis, K. P., & Biliaderis, C. G. (2008). Thermal, mechanical and Water vapour barrier properties of sodium caseinate films containing antimicrobials and their inhibitoy action on Listeria monocytogenes. Food Hydrocolloids, 22, 373-386.
    連結:
  46. Lai, L. S., & Chao, S. J. (2000a). A DSC study on the gel-sol transition of a starch and hsian-tsao leaf gum mixed system. Journal of Agricultural and Food Chemistry, 48, 3267-3274.
    連結:
  47. Lai, L. S., & Chao, S. J. (2000b). Effects of salts on the thermal reversibility of starch and hsian-tsao (Mesona procumbens Hemsl) leaf gum mixed system. Journal of Food Science, 65, 954-959.
    連結:
  48. Lai, L. S., & Chiang, S.F. (2002). Rheology of decolorized hsian-tsao leaf gum in the diluted domain. Food Hydrocolloids, 16, 427-440.
    連結:
  49. Lai, L. S., & Liao, C. L. (2002a). Steady and dynamic rheological properties of starch/decolorized hsian-tsao leaf gum composite systems. Cereal Chemistry, 79, 58-63.
    連結:
  50. Lai, L. S., & Liao, C. L. (2002b). Dynamic rheology of structural development in starch/decolourised hsian-tsao leaf gum composite systems. Journal of the Science of Food and Agriculure, 82, 1200-1207.
    連結:
  51. Lai, L. S., & Lin, P.H. (2004). Applications of decolorized hsian-tsao leaf gum to low-fat salad dressing model emulsions – a rheological study. Journal of the Science of Food and Agriculure, 84, 1307-1314.
    連結:
  52. Lee, J. Y., Park, H. J., Lee, C. Y., & Choi, W. Y. (2003). Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. Lebensmittel Wissenschaft and Technologie, 36: 323-329.
    連結:
  53. Mahmoud, R., & Savello, P. A. (1992). Mechanical properties of and water vapor transferability through whey protein films. Journal of Dairy Science, 75: 942-946.
    連結:
  54. Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50, 379-386.
    連結:
  55. Mali, S., & Grossmann, M. V. E. (2003). Effect of Starch films on storability and quality of fresh strawberries (fragaria ananassa). Journal of Agricultural and Food Chemistry, 51: 7005-7011.
    連結:
  56. Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritzky, N. E. (2004). Barrier, mechanical and optical properties of yam starch films. Carbohydrate Polymers, 56, 129-135.
    連結:
  57. Mali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. E. (2005). Water sorption and mechanical properties of cassava starch films and their relaion to plasticizing effect. Carbohydrate Polymers, 60, 283-289.
    連結:
  58. Mathew, A. P., & Dufresne, A. (2002). Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromolecules, 3, 1101-1108.
    連結:
  59. Mchugh, T. H., & Krochta, J. M. (1994). Water vapor permeability properties of edible whey protein-lipid emulsion films. Journal of the American Oil Chemists’ Society. 71: 307-312.
    連結:
  60. Mir, M. A., & Nath, N. (1995). Sorption isotherms of fortified bars. Journal of Food Engineering, 25, 141-150.
    連結:
  61. Monterrey, E. S., & Sorbral, P. J. A. (1999). Caracterizacão de propriedades mecânicas e óticas de films a base de proteínas miofibrilares de tilápia do Nilo usando uma metodologia de superfície de resposta. Ciência e Tecnologia de Alimentos, 19, 294-301.
    連結:
  62. Morillon, V., debeaufort, F., Blond, G., Capelle, M., & Voilley, A. (2002). Factors affecting the moisture permeability of lipid based edible films: A review. Critical Reviews in Food Science and Nutrition, 42: 67-89.
    連結:
  63. Morris, V. J. (1986). Multicomponents gels. In “Gums and stabilizers for the food industry 3, 1st edition” G. O. Phillips, D. J. Wedlock and P. A. Williams(Ed), Elsevier Applied Science, Londen and New York. pp, 87-99.
    連結:
  64. Mathlouthi, M. (2001). Water content, water activity, water structure and the stability of foodstuffs. Food Control, 12, 409-417.
    連結:
  65. Müller, C. M. O., Yamashita, F., & Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72, 82-87.
    連結:
  66. Myllarinen, P., Partanen, R., Seppala, J., & Forsell, P. (2002). Effect of glycerol on behaviour of amylose and amylopectin films. Carbohydrate Polymer, 50, 355-361.
    連結:
  67. Ouattara, B., Simard, R. E., Piette, J. P. G., Bégin, A., & Holley, R. A. (2000). Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62: 139-148.
    連結:
  68. Ouattara, B., Giroux, M., Yefsah, R., Smoragiewicz, W., Saucier, L., Borsa, J., & Lacroix, M. (2002). Microbiological and biochemical characteristics of ground beef as affected by gamma irradiation, food additives and edible coating film. Radiation Physics and Chemistry 63: 299-304.
    連結:
  69. Padgett, T., Han, L. Y., & Dawson, P. L. (1998). Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. Journal of Food Protection, 61: 1330-1335.
    連結:
  70. Park, H. J., Chinnan, M. S., & Shewfelt, R. L. (1994). Effect of corn-zein film coating on the storage life of tomatoes. Journal of Food Processing and Preservation, 18: 317-331.
    連結:
  71. Park, H. J. (1999). Development of advanced edible coatings for fruits., Trends in Food Science & Technology, 10, 254-260.
    連結:
  72. Parra, D. F., Tadini, C. C., Ponce, P., & Lugão, A. B. (2004). Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydrate Polymers, 58, 475-481.
    連結:
  73. Pearnchob, N., Dashevsky, A., Bodmeier, R. (2004). Improvement in the disintegration of shellac-coated soft gelatin capsules in simulated intestinal fluid. Journal of Control Release, 94: 313-321.
    連結:
  74. Peressini, D., Bravin, B., Lapasin, R., Rizzotti, C., & Sensidoni, A. (2003). Starch-methylcellulose based edible films: rheological properties of film-forming dispersion. Journal of Food Engineering, 59: 25-32.
    連結:
  75. Petersen, K., Nielsen, P.V., Bertelsen, G., Lawther, M., Olsen, M.B., Nilsson, N.H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science & Technology 10, 52-68.
    連結:
  76. Pranoto, Y., Salokhe, V. M., & Rakshit, S.K., (2005). Physcial and antibacterial properties of alginate-based edible film incorporated with garlic oil. Food Research International, 38: 267-272.
    連結:
  77. Quezada-Gallo, J. A., Debeaufort, F., Callegarin, F., & Voilley, A. (2000). Lipid hydrophobicity, physical state and distribution effects on the properties of emulsion-based edible films. Journal of Membrane Science, 180, 37-46.
    連結:
  78. Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science 62:373-380.
    連結:
  79. Rhim, J. W., Gennadio, A., Weller, C. L., & Hanna, M. A. (2002). Sodium dodecyl sulfate treatment improves properties of cast films from soy protein isolate. Journal of Food Engineering, 15: 199-205.
    連結:
  80. Rodríguez, M., Osés, J., Ziani, K., & Maté J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39, 840-846.
    連結:
  81. Rojas-Graü, M. A., Raybaudi-Massilia, R. M., Soliva-Fortuny, R. C., Avena-Bustillos, R. J., Mchugh, T. H., & Martín-Belloso, O. (2007). Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh –cut apples. Postharvest Biology and Technology, 45, 254-264.
    連結:
  82. Rojas-Graü, M. A., Tapia, M. S., Rodríguez, F. J., Carmona, A. J., & Martín-Belloso, O. (2007). Alginate and gellan-based edible coating as carrier of antibrowning agents applied on fresh –cut apples. Food Hydrocolloids, 21, 118-127.
    連結:
  83. Romero-Bastida, C. A., Bello-pérez, L. A., García, M. A., Martino, M. N., Solorza-Feria, J., & Zaritzky, N. E. (2005). Physicochenical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydrate Polymers, 60, 235-244.
    連結:
  84. Rosen, S. L. (1993). Fundamental principles of polymeric materials. NY, USA: John Wiley & Sons. pp. 103-109.
    連結:
  85. Santerre, C. R., Leach, T. F., & Cash, J. N. (1989). The influence of sucrose polyester, SemperfreshTM, on the storage of Michigan grown ‘Mclntosh’ and ‘Golden Delicious’ apples. Journal of food Processing and Preservation, 13: 293-305.
    連結:
  86. Scannell, A. G. M., Hill, C., Ross, R. P., Marx, S., Hartmeier, W., & Arendt, E. K. (2000). Development of bioactive food packaging materials using immobilized bacteriocins Lacticin 3714 and Nisapiin. International Journal of Food Microbiol, 60: 241-249.
    連結:
  87. Sebtic, I., & Coma, V. 2002. Active edible polysaccharide coating and interactions between solution coating compounds. Carbohydrate Polymer, 49: 139-144.
    連結:
  88. Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39, 639-644.
    連結:
  89. Shaw, D. J. (1992). Introduction to colloid and surface chemistry. Oxford, UK: Reed Educational and Professional Publishing Ltd., pp. 76-89.
    連結:
  90. Sothornvit, R., & Krochta, J. M. (2001). Plasticizer effect on mechanical properties of β-lactoglobulin films. Journal of Food Engineering, 50, 149-155.
    連結:
  91. Sperling, L. H. (2001). Introduction to Physical Polymer Science. 3rd. NY : John Wiley & Sons, Inc., Publication, pp, 482-483, 300-301.
    連結:
  92. Steffe, J. F. (1996). Rheological methods in food process engineer. Michigan: Freeman Press. pp, 305-308.
    連結:
  93. Talja, R. A., Helen, H., Roos, Y.H. & Jouppila, K. (2007). Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydrate Polymers, 67, 288-295.
    連結:
  94. Tharanathan, R. N. (2003). Biodegradable films and compsite coating: past, present and future. Trends in Food Science and Technoloy, 14: 71-78.
    連結:
  95. Torrs, J. A., Motoki, M., & Takano, M. (1985). Microbial stabilization of intermediate moisture food surface. I. Control of surface preservative concentration. Journal of Food Processing and Preservation, 9: 75-92.
    連結:
  96. Veiga-Santos, P., Oliveira, L. M., Cereda, M, P., Alves, A, J., & Scamparini, A, R, P. (2005). Mechanical properties, hydrophilicity and water activity of starch-gum films: effect of additives and deacetylated xanthan gum. Food Hydrocolloids, 19, 341-349.
    連結:
  97. Vicentini, N. M., Dupuy, N., Leitzelman, M., Cereda, M. P. & Sobral, P. J. A. (2005). Prediction of cassava starch edible film properties by chemometric analysis of infrared spectra. Spectroscopy Letters, 38, 749-767.
    連結:
  98. Villalobos, R., Chanona, J., Hernández, P., Gutiérrez, G., & Chiralt, A. (2005). Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hydrocolloids, 19, 53-61.
    連結:
  99. Villalobos, R., Hernández-Muñoz, P., & Chiralt, A. (2006). Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films. Food Hydrocolloids, 20, 502-509.
    連結:
  100. Weller, C. L., Gennadios, A., & Saraiva, R. A. (1998). Edible bilayer films from zein and grain sorghum wax or Carnauba wax. Lebensmittel Wissenschaft and Technologie, 31, 279-285.
    連結:
  101. Wong, D. W. S., Gastineau, F. A., Gregorski, K. S., Tillin, S. J., & Pavlath, A. E., (1992). Chitosan-lipid films: microstructure and surface energy. Journal of Agricultural and Food Chemistry, 40: 540-544.
    連結:
  102. Xu, S., Chen, X., & Sun, D. W. (2001). Preservation of kiwifruit coated with an edible film at ambient temperature. Journal of Food Engineering, 50: 211-216.
    連結:
  103. Yang, L., & Paulson, A. T. (2000). Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food Research International, 33, 571-578.
    連結:
  104. Yearsley, C. W., Banks, N. H., Ganesh, S., & Cleland, D. J. (1996). Determination of lower oxygen limits for apple fruit. Postharvest Biology and Technology, 8: 95-105.
    連結:
  105. Zhao, C. H., Leonard, S. W., & Traber, M. G. (2004). Edible coatings to improve storability and enhance nutritional value of fresh and strawberries (Fragaria × ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33: 67-78.
    連結:
  106. 柒、參考文獻
  107. 王志鵬、陳明娟、翁義銘:以纖維素可食性膜被覆蜜餞之研究。嘉義農專學報,48: 1-8(1996)
  108. 甘偉松:藥用植樹學。國立中國醫藥研究所,台北,台灣(1980)。
  109. 李幸宜:添加脂肪酸或臘質對羥丙基甲基纖維素可食性薄膜之物化特性探討。屏東科技大學食品科學系碩士論文,屏東,台灣 (2003)。
  110. 李秀、賴滋漢、柯文慶:食品分析與檢驗。富林出版社,台中,台灣。(2000)。
  111. 邱年永、張光雄:原色臺灣藥用植物圖鑑(2)。P. 190,南天,台北,台灣(1986)。
  112. 胡敏夫:經濟植物集。P.160-162。豐年社,台北,台灣(1988)。
  113. 陳烔堂:食用膜材質分子交互作用與相容性。可食膜研討會。新竹,台灣(2001)。
  114. 區少梅:食品感官品評學及實習。華格那企業,台中,台灣 (2007)。
  115. 黃健政:多醣類與蛋白質製備高抗濕可食膜之研究。可食膜研討會。新竹,台灣(2001)。
  116. 趙承琛: 界面科學基礎。復文書局,台南,台北。
  117. 趙秀真、賴麗旭。以快速黏度分析儀探討鹽類對仙草葉膠凝膠行為之影響。食品科學,26(2),228-239。
  118. 廖志倫、賴麗旭。澱粉/脫色仙草葉膠混合系統熱性質之研究與微細結構之觀察。台灣農業化學與食品科學,39(3),204-213。
  119. 潘慧芳:添加臘質或脂肪酸對於甲基纖維素可食膜之影響研究。屏東科技大學食品科學系碩士班碩士論文(2002),屏東,台灣。
  120. 薛敬和: 高分子化學。高立圖書有限公司,台北,台灣。
  121. Appendini, P., Hotchkiss J. H., 2002. Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies. 3: 113-126.
  122. ASTM. (2000a). Stand test methods for tensile properties of thin plastic sheeting, method D 882-00. Philadelphia, PA: American Society for Testing and Materials.
  123. Baldwin, E. A. (1994). Edible coatings for fresh fruits and vegetables: past, present, and future. In: Krochta, J. M., Baldwin, E.A., & Nisperos-Carriedo, M. (Ed), Edible coatings and films to improve food quality. Technomic Publishing Company, Inc, Pen, U.S.A. pp, 25-64.
  124. Christianson, D. D. (1982). Hydrocolloid interactions with starches. In D. R. Lineback, G. E. Inglett (Eds.), Food Carbohydrates. Westport, CT: AVI Publishing Company, Inc. pp, 399-419.
  125. Donhowe, I. G., & Fennema, O. (1994). Edible Film and Coating: Characteristics, Formation, Defintions, and Testing Methods. In: Krochta, J. M., Baldwin, E.A., & Nisperos-Carriedo, M. (Ed), Edible coatings and films to improve food quality. Technomic Publishing Company, Inc, Pen, U.S.A. pp, 1-24.
  126. Gennadios, A, Mchugh T. H, Weller C, Krochta J. M. (1994). Edible coatings and films based on protein. In: Krochta, J. M., Baldwin, E.A., & Nisperos-Carriedo, M. (Ed), Edible coatings and films to improve food quality. Technomic Publishing Company, Inc, Pen, U.S.A. pp, 201-277.
  127. Hernandez, E. (1994). Edible coatings from lipid and Resins. In: Krochta, J. M., Baldwin, E.A., & Nisperos-Carriedo, M. (Ed), Edible coatings and films to improve food quality. Technomic Publishing Company, Inc, Pen, U.S.A. pp, 279-303.
  128. Hotchkiss, J. H. (1995). Safety consideration in active packaging. In: Roony, M. L. (Ed.), Active Food Packaging, Glasgow: Blackie Academic & Professional Bishopbriggs. pp, 238-253.
  129. Kheshgi, H. S. (1997). The fate of liquid films after coating. In S. F. Kistler & P. M. Schweizer (Eds.), Liquid film coating. London, UK: Chapman & Hall, pp, 183-205.
  130. Labuza, T. P. (1968). Sorption phenomena in foods. Food Technolong. (Chicago) 22, 263-272.
  131. Mahmoud, R., & Savello, P. A. (1993). Solubility and hydrolyzability of films produced of whey protein. Journal of Dairy Science, 76: 29-35.
  132. Meyer, A., Suhr, K. I., Nielsen, P. V., & Holm, F. (2002). Natural food preservation. In: Ohlsson, T. and Bengtson, N. (eds.). Minimal processing technologies in the food industry. Woodhead Publishing, Cambridge, pp, 124–174.
  133. Mielgarrd, M., Civille, G. V., & Carr, B. T. (1999). Sensory evaluation technique (3rd ed). Boca Raton, FL, CRC Press. Inc.
  134. Nisperos-Carriedo, M. O. 1994. Edible coatings and films based on polysaccharides. In: Krochta, J. M., Baldwin, E.A., & Nisperos-Carriedo, M. (Ed), Edible coatings and films to improve food quality. Technomic Publishing Company, Inc, Pen, U.S.A. pp, 305-308.
  135. Pangborn, R. M. (1984). Sensory analysis as an analytical laboratory tool in food research. In K. K. Stewart & J. R. Whitaker (Eds), Modern methods of food analysis (pp. 265-292). Conn. U.S.A. AVI Publishing Co.
  136. Rao, M.A. (1999). Rheology of fluid and semisolid foods: principles and applications. Maryland: Aspen Publishers, Inc. pp, 32-34, 153-157.
  137. Van Soest, J. J. G., Bezemer, R. C., de Wit, D., & Vliegenthart, J. F. G. (1995). Influence of glycerol on the melting of potato starch. Industrial Crops and Products, 5: 1-9.
  138. Zobel, H. F. (1994). Starch granule structure. In R. J. Alexander & H. F. Zobel (Eds.), Developments in carbohydrate chemistry. St. Paul, MN: The American Association of Cereal Chemists. pp, 1–36.
Times Cited
  1. 方柏翔(2015)。不同界面活性劑對糖質克弗爾多醣/小麥澱粉可食膜物理性質的影響。中興大學食品暨應用生物科技學系所學位論文。2015。1-113。 
  2. 林詩涵(2014)。以反應曲面法探討糖質克弗爾多醣/小麥澱粉混合膜之物理及機械特性。中興大學食品暨應用生物科技學系所學位論文。2014。1-132。 
  3. 吳宛諭(2010)。不同界面活性劑對樹薯澱粉/脫色仙草葉膠可食性薄膜的物性影響。中興大學食品暨應用生物科技學系所學位論文。2010。1-109。 
  4. 陳建宏(2011)。含檸檬草精油之樹薯澱粉/褐藻酸鈉口含片的開發。中興大學食品暨應用生物科技學系所學位論文。2011。1-122。
  5. 李孟儒(2017)。利用不同種類植物油製備植物油角取代中式香腸部分豬油角之研究。中興大學食品暨應用生物科技學系所學位論文。2017。1-82。