Title

金屬有機化學氣相沉積法摻雜硼對氧化鋅光學性質及導電性質之影響

Translated Titles

Effects of boron dopant on optical properties and electrical conductivities of ZnO prepared by metal organic chemical vapor deposition

DOI

10.6845/NCHU.2013.00545

Authors

鄭喬勻

Key Words

摻雜硼對氧化鋅 ; 金屬有機化學氣相沉積法 ; ZnO:B ; MOCVD

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

顏秀崗 教授

Content Language

繁體中文

Chinese Abstract

與濺鍍法(Sputtering)相比利用金屬有機化學氣相沉積法(MOCVD)製備氧化鋅摻雜硼(ZnO:B) 薄膜,可以直接創建紋理形態(texture) 的前電極而具有優良的光散射可應用於疊層太陽能電池 (Tandem solar cell)。MOCVD能控制塗層組成及結晶性並且能在複雜形狀的基板上形成均勻、緻密的結構和良好的附著性。能滿足商業量產的目的,成為優先選擇的沉積技術之一。 本研究以液態的二乙基鋅(DEZ)和水(H2O)蒸氣分別在4000 SCCM/ 38℃和4500 SCCM/ 33℃,當前驅物,並利用4000 SCCM的氬氣直接汽化同時摻雜乙硼烷(B2H6)導入腔室,製程中保持在850 sccm的流量,沉積時間分別為300秒,425秒,528秒和621秒來達到不一樣的膜厚。另外摻雜乙硼烷(B2H6),製程中採不同的流量分別為650sccm,750sccm和850sccm來觀察其光和電性質的變化。在成膜過程中,腔體的製程壓力保持在0.3torr,而成膜溫度保持在180℃。所獲得鍍膜再利用X射線繞射(XRD)、掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)、紫外光/可見光分光光譜儀(UV/ VIS)及四點探針來個別分析晶體結構、表面形態、粗糙度、霧度、透射率和片電阻的性質。 將鍍膜時間增加時,其厚度、粗糙度、霧度和晶粒大小會伴隨著增加而片阻值和透射率則會降低。在另一部份,將厚度獨立出來,當流量增加時,其粗糙度、霧度、晶粒大小和片阻值會伴隋著降低。在它們之中其結果在1.5微米厚的ZnO:B薄膜在乙硼烷(B2H6)流量為850sccm的條件時,其霧度13.4%,電阻率7.7歐姆/□,透光率87.2%的光電性質,而最有機會達到在台灣自行生產Transparent conduction oxide(TCO) 玻璃的目的進而減少購買TCO玻璃。

English Abstract

Compared with sputtering technique for the growth of boron doped zine oxide (ZnO:B) thin films, metal organic chemical vapor deposition( MOCVD) can directly create textured morphology with excellent light scattering for front electrode application in tandem solar cells. It is also easy to control coating composition and crystal quality, revealing many advantages such as coating on complex shaped substrate with dense structure and good adhesion. For large-scale commercialized production, it is one of the preferred deposition techniques, too. In this study, diethylzinc (DEZ) and water (H2O) vapor controlled at 4000 sccm / 38℃ and 4500 sccm / 33℃ respectively, were used as precursors and directly evaporated with 4000 sccm argon for dillution. The diborane (B2H6) used as dopant was transported at 850 sccm directly with 4000 sccm argon to the chamber, for 300, 425, 528 and 621s to obtain 4 kinds of film thickness. 3 flow rates of B2H6 including 650 sccm, 750 sccm and 850 sccm conducted to obtain 3 concentrations of B. During the growth, the total pressure was kept at 0.3 torr inside the reactor and the substrate growth temperature was kept constant at 180 ℃. Coated specimens were characterized by x- ray diffraction (XRD) , scanning electron microscope (SEM) , atomic force microscope (AFM) , haze, transmittance and sheet resistance. With deposition time increasing, the thickness, roughness, haze and grain size increased, and the sheet resistivity and transmittance decreased. On the other hand, the thickness was independent of flow rate and the roughness, haze, grain size and sheet resistivity decreased with flow rate increasing. Among them, the optical and electrical properties of ZnO:B thin film with 1.5μm thickness prepared with B2H6 flow rate at 850 sccm revealed haze 13.4%, sheet resistivity 7.7 ohm/sq and transmittance 87.2%, leading to the chance for producing transparent conduction oxide( TCO) in Taiwan, and reducing the quantity of importation.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. 1. S. Fay, J. Steinhauser, S. Nicolay, C. Ballif, Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells, Thin Solid Films 518, P2961–2966 (2010).
    連結:
  2. 2. M. Zeman, R.E.I. Schropp, Amorphous and Microcrystalline Silicon Solar Cells 104, P359-413 (2008)
    連結:
  3. 8. D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, P292 (1977)
    連結:
  4. 10. J.R. Bellingham, W.A. Phillips, and C.J. Adkins, J. Phys. Matter, 2, P6207 (1992)
    連結:
  5. 14. G. Haacke, Ann. Rev. Mater. Sci. 7, P73 (1977).
    連結:
  6. 15. A. Sarkar, S. Ghosh, S. Chaudhury and A. K. Pal, Thin Solid Films, 204, P255- 264 (1991)
    連結:
  7. 16. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature, Applied Physics Letters 70, P2230–2232 (1997).
    連結:
  8. 19. S.Fay, L. Feitknecht, R. Schluchter, U. Kroll, E. Vallat-Sauvain, A. Shah, Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells, Solar Energy Materials and Solar Cells 90, P2960–2967 (2006)
    連結:
  9. 22. Jui-Chung Hsiao, Chien-Hsun Chen, Hung-Jen Yang, Chien-Liang Wu, Chia-Ming Fan, Chien-Fu Huang, Chao-Cheng Lin, Peichen Yu, Jenn-Chang Hwang, Journal of the Taiwan Institute of Chemical Engineers, In Press, Corrected Proof, Available online 30 (2013)
    連結:
  10. 24. S. Fay, J. Steinhauser, S. Nicolay, C. Ballif, Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells, Thin Solid Films 518, P2961–2966 (2009)
    連結:
  11. 26. Wilson W. Wenas, Akira Yamada, Kiyoshi Takahashi, Masahiro Yoshino, and Makoto Konagai, J. Appl. Phys. 70, P7119 (1991)
    連結:
  12. 28. S. Nicolay, M. Despeisse, F. – J. Haug, C. Ballif, Solar Energy Materials % Solar Cells 95, P1031- 1034 (2011)
    連結:
  13. 29. J. Hu, R.G. Gordon, J. Appl. Phys. 72, P5381 (1992)
    連結:
  14. 30. 盧志銘, “ 磁控濺鍍氧化鋅鋁(ZnO: Al) 薄膜之特性與應用研究” , 國立中大學材料科學與工程學研究所, (2007)
    連結:
  15. 31. S. Fay, J. Steinhauser, N. Oliveira, E. Vallat-Ballif, Opto-electronic properties of rough LP-VCD ZnO: B for use as TCO in thin-film silicon solar cells, Thin Solid Films 515, P8558-8561 (2007 )
    連結:
  16. 32. S. Fay, J. Steinhauser, S. Nicolay, C. Ballif, Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells, Thin Solid Films 518, P2961–2966 (2010)
    連結:
  17. 33. K. Haga, P.S. Wijesena, H. Watanabe, Appl. Surf. Sci. 504, P169-170 (2001)
    連結:
  18. 3. J. M‥uller, G. Sch‥ope, O. Kluth, B. Rech, V. Sittinger, B. Szyszka, R. Geyer, P. Lechner, H. Schade, M. Ruske, G. Dittmar, H.P. Bochem, Thin Solid Films 442, P158 (2003)
  19. 4. A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, Prog. Photovolt. Res. Appl. 12, P113 (2004)
  20. 5. J.M. Woodcock, H. Schade, H. Maurus, B. Dimmler, J. Springer, A. Ricaud, in Proceedings of the 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, P857 (1997)
  21. 6. J. Morris, R.R. Arya, J.G. ODowd, D. Wiedemann, J. Appl. Phys. 67, P1079 (1990)
  22. 7. N. Pellaton Vaucher, J.L. Nagel, R. Platz, D. Fischer, A. Shah, in Proceedings of the 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, Austria, P728 (1998)
  23. 9. K. Baedeker, Ann. Phys. 22, P749 (1907)
  24. 11. M. Hiramatsu, K. Imaeda, N. Horio, and M.Nawata, J. Vac. Sci. Technol., A 16 P 669 (1998).
  25. 12. T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys., Part 2: Lett. 25, P776 (1986).
  26. 13. H.Kawazoe, H.Yanagi, K.Ueda and H.Hosono, MRS Bulletin 28. (2000)
  27. 17. H. Schade and Z. E Smith, J. Appl. Phys. 57, P568 (1985).
  28. 18. S. Mayor and K. L. Chopra, Sol. Energy Mater. 17, P319 (1988).
  29. 20. D. Pier and K. Mitchell, Proceedings of the 9th European Photovoltaic Solar Energy Conference, edited by W. Palz, G. T. Wrixon, and P. Helm (Kluwer Academic, Dordrecht, Netherlands, P488 (1989)
  30. 21. Li Gao, Yan Zhang, Jian-Min Zhang, Ke-Wei Xu, Applied Surface Science, Volume 257, Issue 7, P2498-2502 (2011)
  31. 23. Chien-Yie Tsay, Wei-Tse Hsu, Ceramics International, In Press, Corrected Proof, Available online 7 (2013)
  32. 25. MOCVD設備, http://blog.yam.com/industry1984/article/44030263
  33. 27. F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, Solar Energy Materials and Solar Cells 90, P2952-2959 (2006).
  34. 34. J.A.A. Selvan, H. Keppner, U. Kroll, J. Cuperus, A. Shah, T. Adatte, N. Randall, Mater. Res. Soc. Symp. Proc. 472, P39 (1997)
  35. 35. L. Ding, M. Boccard, G. Bugnon, M. Benkhaira, S. Nicolay, M. Despeisse, F. Meillaud, C. Ballif, Solar Energy Materials & Solar Cells 98, P331-336 (2012)
  36. 36. V. Sittinger, F. Ruske, W. Werner, B. Szyszka, B. Rech, J. Hupkes, G.. Schope, H. Stiebig, Thin Solid Films 496, P16 (2006)
  37. 37. Wilson W. Wenas, Akira Yamada, and Kiyoshi Takahashi, Jpn. J. Appl. Phys. 32, P3764-3769 (1993)