Title

中海拔菜園回收地土壤性質與菌根苗木生長之研究

Translated Titles

Study on soil properties and mycorrhizal seedling growth in reclaimed area from medium altitude vegetable field

DOI

10.6845/NCHU.2013.00574

Authors

郭珆㚬

Key Words

菜園回收地 ; 叢枝菌根菌 ; 紅檜 ; 土壤養分 ; 石灰 ; Reclaimed area from vegetable field ; Arbuscular mycorrhizal fungi ; Chamaecyparis formosensis ; Soil nutrients ; Lime

PublicationName

中興大學森林學系所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

顏江河

Content Language

繁體中文

Chinese Abstract

台灣中部丹大事業區中海拔林班地,長期遭農民違法栽種蔬菜,在南投林區管理處將其林地收回後進行復育造林,發現苗木始終遲滯生長,推測應為先前施用大量石灰 (lime) 與雞糞肥料,導致土壤性質有所改變。本研究之目的在於了解中海拔菜園回收地 (reclaimed area from medium altitude vegetable field) 土壤性質,並探討叢枝菌根菌 (arbuscular mycorrhizal fungi) 對紅檜 (Chamaecyparis formosensis) 苗木在此土壤的生長及對土壤養分之影響。試驗分成野外及溫室2大部份進行。野外試驗主要調查該區菜園回收地土壤化學性質與土壤酵素活性,同時了解造林苗木菌根 (mycorrhiza) 狀態,並分離當地菌根菌種接種紅檜後,栽植至菜園回收地,觀察菌根苗木於當地生長之情形。溫室內則針對紅檜小苗進行菌根菌接種及酸雨處理,觀察菌根處理下紅檜生長及植體養分狀態,亦針對土壤化學性質及滲漏水進行分析,以了解菌根菌在菜園回收地中對苗木及土壤之影響。結果顯示,丹大事業區菜園回收地因長期不當施用石灰及雞糞肥料,殘留大量的鈣於土壤中,使土壤逐漸鹼化,影響其中養分的平衡及有效性,尤其以磷最為顯著。另外土壤鹼性磷酸酶 (alkaline phosphatase) 的缺乏也可能影響了磷的轉換速率,導致供植物吸收利用的有效磷不足。紅檜苗木接種叢枝菌根菌在高生長、植體生物量及養分濃度,皆顯著高於未接種者,同時菌根接種也減少土壤中養分淋洗流失。本研究證實丹大事業區菜園回收地土壤化學及生物性質的改變,導致當地對苗木形成生長逆境,而叢枝菌根不僅可提高紅檜對逆境的適應力,亦可提升土壤養分的截留,使苗木能於逆境中正常生長。

English Abstract

In Dan-da working circle of central Taiwan, vegetable were planted illegally in medium altitude forest land for many years which was reclaimed and reforested by Nantou forest district office but the seedlings growth was retarded. We think that the long-term lime and manure application might change the soil properties and probably affect the seedlings growth. The aim of this study was to understand the soil properties in reclaimed area from medium altitude vegetable field and how arbuscular mycorrhizal fungi affected the growth of Chamaecyparis formosensis seedlings and soil nutrients. To find out what affected the seedlings growth, experiments were divided into two parts: field and greenhouse. Field experiment was to investigate soil chemical poperties and enzyme activity of reclaimed area from vegetable field in Dan-da working circle. We also investigated the mycorrhiza state of reforestation seedlings and isolated the mycorrhizal fungi from locals. Then we observed the growth of the mycorrhizal seedlings, C. formosensis, which were inoculated with these local mycorrhizal fungi and were planted in the reclaimed area from vegetable field at Dan-da working circle. In greenhouse experiment, to observe the growth and nutrient status of seedlings, C. formosensis seedlings were inoculated with arbuscular fungi and with different acid rain treatments. We also assayed the soil chemical properties and leachate to figure out the effect of mycorrhizal fungi on seedlings and soil at reclaimed area from vegetable field. The results showed that excess lime and manure were applied to the vegetable field for many years, which had led calcium residues in the soil and the alkalinization of the soil broke the balance of soil nutrients and its availability, especially phosphate. In addition, a lack of alkaline phosphatase, which may obstruct the phosphorus mineralization, led to the shortage of available phosphorus. However, the height, biomass and nutrient of seedlings that inoculated with arbuscular mycorrhizal fungi got significant higher than those of the uninoculated ones. Simultaneously, the inoculated seedlings reduced the loss of soil nutrient via leaching. In this study, the changes of soil chemical properties and enzyme activity in the reclaimed area from vegetable field at Dan-da working circle created growth stress in seedlings. And arbuscular mycorrhizae could not only enhanced the adaptation of C. formosensis but also increased the interception of soil nutrients, which made seedlings to overcome the adversity.

Topic Category 農業暨自然資源學院 > 森林學系所
生物農學 > 森林
Reference
  1. 江彥霈、洪詩涵、王俊傑、沈佳俞、張鎮南 (2005) 德基水庫水質受天災事件及消毒副產物生成潛能變化之探討。東海科學 7: 31-49。
    連結:
  2. 李雪甄、莊愷瑋 (2011) 降低pH對鹼性土壤中磷有效性與可溶性的影響。台灣農業化學與食品科學 49(3): 99-110。
    連結:
  3. 呂斯文、張喜寧 (1993) 利用濾膜表面發芽法進行繡球屬與大孢子屬孢子發芽生理試驗。中華真菌學會會刊 8(3/4): 1-19。
    連結:
  4. 林晉卿、黃瑞彰、林經偉 (2002) 堆肥品質及其應用於介質之調製。行政院農委會台南區農業專訊 40: 6-11。
    連結:
  5. 茹皆耀、華孟 (1947) 台中縣之土壤。台灣省農業試驗所專報第3號。
    連結:
  6. 陳存澤 (2008) 不同的施肥管理對土壤化學性質、酵素活性及微生物族群結構的影響。國立台灣大學農業化學系碩士論文。106頁。
    連結:
  7. 傅國銘、歐辰雄、呂福原 (2004) 丹大地區植群之研究。台大實驗林研究報告 18(4): 247-260。
    連結:
  8. 賴文龍、吳尚鑒、藍祐利、林文陞 (2004) 梨山地區甘藍蔬菜園土壤肥培管理之探討。行政院農委會台中區農情月刊 57。
    連結:
  9. 顏江河 (1996) 彩色豆馬勃琉球松菌根在煤礦棄土對土壤溶液中鋁、硫含量及其吸收之效應。國立台灣大學森林學研究所博士論文。110頁。
    連結:
  10. Alguacil, M. M., F. Caravaca and A. Roldan (2005) Changes in rhizosphere microbial activity mediated by native or allochthonous AM fungi in the reafforestation of a Mediterranean degraded environment. Biology and Fertility of Soils 41: 59-68.
    連結:
  11. Al-Karaki, G. N. (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10: 51-54.
    連結:
  12. Asghari, H. R., D. J. Chittleborough, F. A. Smith and S. E. Smith (2005) Influence of arbuscular mycorrhizal (AM) symbiosis on phosphorus leaching through soil cores. Plant and Soil 275: 181-193.
    連結:
  13. Asghari, H. R. and T. R. Cavagnaro (2011) Arbuscular mycorrhizas enhance plant interception of leached nutrients. Functional Plant Biology 38(3): 219-226.
    連結:
  14. Bear, F. E. and S. J. Toth (1948) Influence of calcium on availability of other cations. Soil Science 65: 69-74.
    連結:
  15. Bethlengalvay, G. J., M. S. Brown, R. N. Ames and R. S. Thomas (1982) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiologia Plantarum 72: 565-571.
    連結:
  16. Brunner, I. and B. Frey (2000) Detection and localization of aluminum and heavy metals in ectomycorrhizal Norway spruce seedlings. Environmental Pollution 108: 121-128.
    連結:
  17. Daniels, B. A. and H. D. Skipper (1982) Methods for the recovery and quanttative estimation of progagules from soil. In: Methods and principles of mycorrhizal research, N. C. Schenck (Ed.). The American Phytopathological Society, Staint Paul pp. 20-45.
    連結:
  18. Duponnois, R., C. Plenchette, Y. Prin, M. Ducousso, M. Kisa, A. Moustapha Baˆ and A. Galiana (2007) Use of mycorrhizal inoculation to improve reafforestation process with Australian Acacia in Sahelian ecozones. Ecological Engineering 29: 105-112.
    連結:
  19. Eivazi, F. and M. A. Tabatabai (1977) Phosphatases in soils. Soil Biology Biochemistry 9: 167-172.
    連結:
  20. Frankenberger, W. T., Jr. and M. A. Tabatabai (1991) L-Asparaginase activity of soils. Biology and Fertility of Soils 11: 6-12.
    連結:
  21. Frostegard, A., E. Baath and A. Tunlid (1993) Shifts in the structure of soil microbial communities in limed forest as revealed by phospholipid fatty acid analysis. Soil Biology and Biochemistry 25: 723-730.
    連結:
  22. Gerdemann, J. W. and T. H. Nicolson (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235-244.
    連結:
  23. Giri, B., R. R. Kapoor and K. G. Mukerji (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils 38: 170-175.
    連結:
  24. Havlin, J. L. and D. G. Westfall (1984) Soil test phosphorous and solubility relationships in calcareous soils. Soil Science Society of America Journal 48: 327-330.
    連結:
  25. Holford, I. C. R. (1997) Soil phosphorus: its measurement, and its uptake by plants. Australian Journal Soil Research 35: 227-239.
    連結:
  26. Hsi, L. C. and S. C. Chang (1960) Soil and soil fertility of Taiwan. Report on Soil and Fertilizer Uses in Taiwan R.O.C. JCRR. Plant Industry Series 20.
    連結:
  27. Hu, J., X. Lin, J. Wang, X. Cui, J. Dai, H. Chu and J. Zhang (2010) Arbuscular mycorrhizal fungus enhances P acquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilization regime. Applied Microbiology and Biotechnology 88: 781-787.
    連結:
  28. Ilacob,V. (1989) Agriculture compendium for rural development in the tropics and subtropics. Elsevier Science Publishing Company Inc. 3rd ed. 740 pages.
    連結:
  29. Kabir, Z. and R. T. Koide (2000) The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agriculture, Ecosystems and Environment 78: 167-174.
    連結:
  30. Khamna, S., A. Yokota and S. Lumyong (2009) L-Asparaginase production by actinomycetes isolated from some Thai medicinal plant rhizosphere soils. International Journal of Integrative Biology 6(1): 22-26.
    連結:
  31. Koide, R. T. and Z. Kabir (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist 148: 511-517.
    連結:
  32. Koske, R. E. and J. N. Gemma (1989) A modified procedure for staining roots to detect VM mycorrhizas. Mycology Research 94(4): 486-505.
    連結:
  33. Kothari, S. K., H. Marschner and E. George (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytologist 116: 303-311.
    連結:
  34. Labidi, S., F. Ben Jeddi, B. Tisserant, D. Debiane, S. Rezgui, A. Grandmougin-Ferjani and A. Lounes-Hadj Sahraoui (2012) Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress. Mycorrhiza 22: 337-345.
    連結:
  35. Li, H., S. E. Smith, R. E. Holloway, Y. Zhu and F. A. Smith (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist 172: 536-543.
    連結:
  36. Li, X. L., E. George and H. Marschner (1991) Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist 119: 397-404.
    連結:
  37. Penn, C. J. and R. B. Bryant (2008) Phosphorus solubility in response to acidification of dairy manure amended soils. Soil Science Society of America Journal 72: 238-243.
    連結:
  38. Polglase, P. J., N. G. Comerford and E. J. Jokela (1992) Mineralization of nitrogen and phosphorus from soil organic matter in southern pine plantations. Soil Science Society of America Journal 56: 921-927.
    連結:
  39. Raiesi, F. and M. Ghollarata (2006) Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil. Pedobiologia 50: 413-425.
    連結:
  40. Rubio, R., F. Borie, C. Schalchli, C. Castillo and R. Azcon (2003) Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Applied Soil Ecology 23(3): 245-255.
    連結:
  41. Ryan, J., H. M. Hasan, M. Baasiri and H. S. Tabbara (1985) Availability and transformation of applied phosphorus in calcareous Lebanese soils. Soil Science Society of America Journal 49: 1215-1220.
    連結:
  42. Taiz, L. and E. Zeiger (2006) Plant physiology. 4th ed. Sinauer Associates. Inc. p.83.
    連結:
  43. Tanaka, Y. and K. Yano (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant, Cell and Environment 28: 1247-1254.
    連結:
  44. Tarafdar, J. C. and N. Claassen (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biology and Fertility of Soils 5: 308-312.
    連結:
  45. van der Heijden, M. G. A. (2010) Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91(4): 1163-1171.
    連結:
  46. Wu, G. J., H. D. Wei and J. Zhao (2006) Nutrient cycling in an Alpine tundra ecosystem on Changbai Mountain, Northeast China. Applied Soil Ecology 32: 199-209.
    連結:
  47. Zhao, J., Y. Dong, X. B. Xie, X. Li, X. X. Zhang and X. Shen (2011) Effect of annual variation in soil pH on available soil nutrients in pear orchards. Acta Ecologica Sinica 31: 212-216.
    連結:
  48. 王明光、汪碧涵、賴朝明、趙維良、田志仁 (2009) 土壤微生物多樣性監測。台灣大學農業化學系、東海大學生態與生物多樣性研究中心。249頁。
  49. 王鐘和 (2004) 有機農業面面觀 (十七) 蔬菜有機栽培~ (一) 肥培管理要領。農業世界 250: 64-68。
  50. 古強、王敏 (2008) 菜園土壤惡化原因及改良方法。四川農業科技 7: 51。
  51. 吳繼光、林素禎 (1998) 囊叢枝內生菌根菌技術應用手冊。臺灣省農業試驗所。59-61頁。
  52. 林素禎 (1998) 台灣囊叢枝內生菌根菌之生態與其應用之研究。國立台灣大學農業化學研究所博士論文。165頁。
  53. 胡弘道 (1990) 林木菌根。國立編譯館。666頁。
  54. 陳仁炫 (1992) 土壤肥力診斷方法-由土壤性質研判。農藥世界 111: 32-37。
  55. 陳仁炫 (1993) 四種有效磷分析法在探討台灣旱田土壤磷有效性之適宜性評估。中國農業化學會誌 31(3): 287-297。
  56. 陳靜修 (1993) 酸雨形成機制及模式之研究。國立中央大學大氣物理研究所博士論文。254頁。
  57. 郭魁士 (1992) 土壤學。中國書局。238-240頁。
  58. 張禮愷 (1987) 土壤酶學。科學出版社。100-262頁。
  59. 黃巧云、李學垣 (1995) 黏粒礦物、有機質對酶活性的影響。土壤學發展 23: 12-18。
  60. 趙藝、施澤明、師剛強 (2009) 土壤pH值與土壤養分有效態關係探討-以內江市白馬鎮為例。四川環境 28(6): 81-83。
  61. 劉仕平、張玲琪、李成雲、郭仕平、楊春燕 (2003) VA菌根營養生理研究概況及其應用前景。西南農業學報 16(2): 93-97。
  62. 鄭國隆 (2000) 土壤酵素活性與土壤生態系之關係。台灣大學農業化學研究所碩士論文。
  63. 劉業經、呂福原、歐辰雄 (1994) 台灣樹木誌。國立中興大學農學院。第71頁。
  64. 劉潤進、陳應龍 (2007) 菌根學。科學出版社。1-13頁。
  65. 謝一青、李志真、楊宗武 (2002) pH值、鹽濃度及鋁離子對菌根菌生長的影響。江西農業大學學報 24(2): 204-207。
  66. 顏正中 (1996) 本省主要土類土壤鉀有效性之評估。國立中興大學土壤環境科學研究所碩士論文。
  67. 顏江河、胡弘道、鍾旭和 (1999) 鋁在煤礦棄土地琉球松菌根造林木的累積。中華林學季刊 32(3): 313-322。
  68. 羅致逑 (2009) 農藥與環境微生物多樣性。農藥與環境研討會 7: 1-20。
  69. Baath, E., A. Frostegard and H. Fritze (1992) Soil bacterial biomass, activity, phospholipids fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Applied and Environmental Microbiology 58: 4026-4031.
  70. Greaves, M. P. (1979) Long-term effects of herbicides on soil microorganisms. Annals of Applied Biology 91: 129-132.
  71. Harris, G. P. (2001) Biogeochemistry of nitrogen and phosphorus in Australian catchments, rivers and estuaries: effects of land use and flow regulation and comparisons with global patterns. Australian Journal of Marine and Freshwater Research 52: 139-149.
  72. MacDonald, C. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78.
  73. McLean, E. O. (1982) Soil pH and lime requirement. In: Page et al. (eds.) Methods of soil analysis. Part II. Chemical and microbiological properties 2nd ed. ASA. CSSA. SSSA. Madison, Wisconsin.
  74. Moore, P. D. and S. B. Chapman (1986) Methods in plant ecology. 2nd ed. Blackwell Scientific Publications. Oxford, London, Edinburgh.
  75. Olsen, S. R., C. V. Cole, F. S. Watanabe and L. A. Dean (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture Circular 939.
  76. Olsen, S. R. and L. E. Sommers (1982) Phosphorus. In: Page et al. (eds.) Methods of soil analysis. Part II. Chemical and microbiological properties 2nd ed. ASA. CSSA. SSSA. Madison, Wisconsin.
  77. Rhoades, J. D. (1982) Cation exchange capacity. In: Page et al. (eds.) Methods of soil analysis. Part II. Chemical and microbiological properties 2nd ed. ASA. CSSA. SSSA. Madison, Wisconsin.
  78. Tunesi, S., V. Poggi and C. Gessa (1999) Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals. Nutrient Cycling in Agroecosystems 53: 219-227.
Times Cited
  1. 羅紫瑄(2015)。菌根接種對台灣扁柏幼苗在菜園回收地土壤之生長效益。中興大學森林學系所學位論文。2015。1-63。 
  2. 莊傑安(2015)。丹大菜園回收地土壤施用硫磺及接種菌根對台灣赤楊生長之影響。中興大學森林學系所學位論文。2015。1-59。 
  3. 張廖伯勳(2014)。牛樟生育地叢枝菌根菌群落及 扦插苗接種對生長之研究。中興大學森林學系所學位論文。2014。1-73。