Title

原子層沉積高品質自組式氧化鋅奈米柱之生長特性

Translated Titles

High quality ZnO self-assembled nanorods prepared by atomic layer deposition

DOI

10.6845/NCHU.2010.00567

Authors

李紹謙

Key Words

氧化鋅 ; 奈米柱 ; 原子層沉積 ; ZnO ; nanorods ; atomic layer deposition

PublicationName

中興大學物理學系所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

龔志榮

Content Language

繁體中文

Chinese Abstract

本研究採用原子層沉積法成長氧化鋅薄膜與奈米柱於(11-20)面氧化鋁基板上。實驗以二乙基鋅(DEZn)與氧化亞氮(N2O)做為II與VI族的前驅氣體,使用高度純化之氮氣當作輸送氣體。藉由改變雙低溫(400℃/300℃)氧化鋅緩衝層之退火方式與退火之時間,來改善氧化鋅薄膜與奈米結構之品質。氧化鋅樣品之表面形態,內部結構與各項物理特性分別使用穿透式電子顯微鏡、掃描式電子顯微鏡、原子力顯微鏡、X-光繞射、光激發光頻譜量測與光穿透與光吸收光譜量測來分析與鑑定。研究結果顯示當吾人選擇以分開的方式將兩層低溫緩衝層退火,並延長退火時間,不但可以改善氧化鋅奈米結構之結晶品質與發光特性,並可成功將部分厚度(~ 170 nm)之後續成長高溫(600℃)氧化鋅奈米柱狀結構粗化結合成薄膜結構。

English Abstract

ZnO nanorods were grown on (11-20) sapphire substrates by atomic layer deposition (ALD) using diethylzinc (DEZn) and nitrous oxide (N2O) as precursors. Purified N2 was utilized to serve as carrier gas. To improve the quality of ZnO nanostructures, various approaches including the time interval of thermal annealing processes of the double-buffer-layer low temperature (LT) ZnO were employed. The physical properties and surface morphologies of ZnO were investigated by transmission electron microscopy(TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffractometry (XRD), photoluminescence spectroscopy (PL) and transmission/absorption spectroscopy. It was found that, by using cyclic annealing of the LT-ZnO double-buffer-layer structure with an extended annealing time interval, one can considerably enhance the crystalline and optical properties of ZnO nanostructures.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
Reference
  1. Phys. Lett. 89,121108 (2006).
    連結:
  2. [3] Y. L. Wang, G. Y. Wang, X. Z. Zhang and D. P. Yu, J.
    連結:
  3. Crystal Growth 287, 89 (2006).
    連結:
  4. [4] J. B. Baxter and E. S. Aydil, J. Crystal Growth 274,
    連結:
  5. 407 (2005).
    連結:
  6. by Chennupati Jagadish and Stephen J. Pearton (2006).
    連結:
  7. [6] 郭耿宏著, “原子層沉積法直接低溫成長氧化鋅薄膜於 氧化鋁
    連結:
  8. [7] 林平原著, “以原子層沉積法生長氧化鋅薄膜於(0001)面氧化鋁
    連結:
  9. [8] J. Lim, K. Shin, H. W. Kim and C. Lee, Mater. Sci. Eng.
    連結:
  10. B107, 301 (2004).
    連結:
  11. [9] J. Chen and T. Fujita, Jpn. J. Appl. Phys. 42, 602
    連結:
  12. (2003).
    連結:
  13. Vacuum 64, 293 (2002).
    連結:
  14. Zhu and J. Lu, Appl. Surf. Sci. 252, 7953 (2006).
    連結:
  15. [12] K. H. Bang, D. K. Hwang, M. C. Jeong, K. S. Sohn and
    連結:
  16. J. M. Myoung, Solid State Commun. 126, 623 (2003).
    連結:
  17. State Commun. 137, 474 (2006).
    連結:
  18. Matsubara, J. Crystal Growth 201, 627 (1999).
    連結:
  19. Growth 286, 61 (2006).
    連結:
  20. [17] J. Chen, and T. Fujita, Jpn. J. Appl. Phys. 42 602
    連結:
  21. (2003).
    連結:
  22. [18] B. P. Zhang, N. T. Binh, Y. Segawa, Y. Kashiwaba, and
    連結:
  23. K. Haga, Appl. Phys. Lett. 84 586 (2004).
    連結:
  24. (1999).
    連結:
  25. [20] T. Koyama and S. F. Chichibu, J. Appl. Phys. 95 7856
    連結:
  26. (2004).
    連結:
  27. [21] 嚴國藝著“生長於 面氧化鋁基板之原子層沉積氧化鋅薄膜特性
    連結:
  28. (1996).
    連結:
  29. [24] B. Lin and Z. Fu, Appl. Phys. Lett. 79, 943 (2001).
    連結:
  30. Bishop and J. J. Coleman, J. Electron. Mater. 24, 1711
    連結:
  31. (1995)
    連結:
  32. [26] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A.
    連結:
  33. Lett. 82, 3901 (2003)
    連結:
  34. [27] Integrating Research and Education,
    連結:
  35. [29] Ernst-Moritz-Arndt-University Greifswald, Institute of
    連結:
  36. [31] Michigan State University, Department of Chemistry,
    連結:
  37. Appl. Phys. Lett. 89, 263102 (2006)
    連結:
  38. [1] H. S. Kang, J. S. Kang, J. W. Kim and S. Y. Lee, J.
  39. Appl. Phys. 95, 1246 (2004).
  40. [2] J. H. Park, S. J. Jang, S. S. Kim and B. T. Lee, Appl.
  41. [5] “ Zinc Oxide Bulk, Thin Films and Nanostructures :
  42. Processing, Properties and Applications ”, edited
  43. 基板之研究”, 國立中興大學 (2008)
  44. 基板及薄膜特性之研究”, 國立中興大學 (2008)
  45. [10] P. Nunes, D. Costa, E. Fortunato and R. Martins,
  46. [11] Y. Miao, Z. Ye, W. Xu, F. Chen, X. Zhou, B. Zhao, L.
  47. [13] Y. S. Jung, O. V. Kononenko and W. K. Choi, Solid
  48. [14] P. Fons, K. Iwata, S. Niki, A. Yamada and K.
  49. [15] F. Xiu, Z. Yang, D. Zhao, J. Liu, K. A. Alim, A. A.
  50. Balandin, M. E. Itkis and R. C. Haddon, J. Crystal
  51. [16] K. K. Kim, J. H. Song, H. J. Jung and W. K. Choi, J.
  52. Appl. Phys. 87, 7 (2000).
  53. [19] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo,
  54. Y. Lu, M.Wraback and H. Shen, J. Appl. Phys. 85 2595
  55. 之研究” , 國立中興大學 (2008)
  56. [22] E. G. Bylander, J. Appl. Phys. 49, 1188 (1978).
  57. [23] K. Vanheusden, C. H. Seager, W. L. Warren, D. R.
  58. Tallant and J. A. Voiget, Appl. Phys. Lett. 68, 403
  59. [25] X. Li, D. V. Forbes, S. Q. Gu, D. A. Turnbull, S. G.
  60. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C.
  61. Bundesmann, H. Hochmuth, and M. Grundmann, Appl. Phys.
  62. http://serc.carleton.edu/research_education
  63. /geochemsheets/BraggsLaw.html
  64. [28] 陳力俊等著, “材料電子顯微鏡學” ,國科會精密儀器發展中
  65. 心 (1994)
  66. Physics, http://www3.physik.uni-greifswald.de/method
  67. /afm/eafm.htm
  68. [30] 劉有台, “掃描探針顯微鏡之發展”,半導體科技 (2002)
  69. http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy
  70. /UV-Vis/uvspec.htm
  71. [32] S. N. Cha, J. E. Jang, Y. Chio, G. A. J. Amaratunga,
Times Cited
  1. 郭翰鴻(2013)。銅銦鎵硒薄膜摻雜及未摻雜鈉元素對其物理特性影響之研究。中興大學奈米科學研究所學位論文。2013。1-71。