Translated Titles

Microwave-induced DC current in an InN nanowire device in magnetic fields





Key Words

氮化銦 ; 微波 ; 光電流 ; 弱的反區域化 ; InN ; microwave-induced DC current ; Weak antilocalization



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本論文是研究當溫度下降到1.4 K,微波輻射在氮化銦(InN)奈米線上,所激發出直流電流的特性以及對外加磁場的關係。在本實驗中所使用的InN樣品是用聚焦離子束(focus ion beam,FIB) 將鉑 (Pt) 沉積在奈米線上作為電極,其中使用的InN奈米線的直徑約為200 nm。微波的頻率範圍介於幾百MHz到24 GHz間,微波照射在樣品上會有直流電流產生,而且此光電流會隨磁場有振盪行為,周期約1 T。我們觀察到振盪的部分與磁場極性翻轉成反對稱的關係,說明了振盪的部分與時間翻轉對稱破壞的傳輸過程相關。我們也發現在低微波功率狀況下電流訊號與微波功率強度相關,在低微波功率狀態下被激發出來的光電流與微波功率強度成正比,這個結果與電子在介觀系統之擴散傳輸理論是吻合。

English Abstract

We report on the microwave-induced current in an InN nanowire (NW) device in magnetic fields (B) at 1.4 K. The InN NW has a diameter of about 200nm, and Pt electrodes defined by focus ion beam (FIB). At frequencies ranging from few hundred MHz to 24 GHz, we observed a significant microwave-induced DC current through the device. This current also exhibits an oscillatory behavior in B with a period of about 1 T. The oscillating part has an anti-symmetry dependence with respect to the reversal of B, indicating that it is related to a process with broken time-reversal symmetry. We also examined the power dependence of the current signal and found that the induced current is proportional to the microwave power, following the theoretical prediction for a mesoscopic diffusive-transport junction.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
  1. [3] S. J. Pearton and F. Ren, Adv. Mater. 12, 1571 (2000).
  2. [11] M. L. Polianski and M. Büttiker, Phys. Rev. B. 76, 205308 (2007).
  3. [12] P. A. LEE and A. Douglas Stone, Phys. Rev. Lett. 55, 1622 (1985).
  4. [13] V. Falko, Europhys. Lett. 8, 785 (1989).
  5. [16] D. Sa´nchez and K. Kang, Phys. Rev. Lett. 100, 036806 (2008)
  6. [18] G. Bergmann, Solid State Communications 42, 815 (1982).
  7. [21] Duan X., Lieber C. M., J. Am. Chem. Soc. 122, 188 (2000).
  8. [1] H. Y. Cha, H. Wu, S. Chae, and M. G. Spencer, J. Appl. Phys. 100, 024307 (2006).
  9. [2] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi and P. Yang, Nature. 422, 599 (2003).
  10. [4] K. I. Lin, J. T. Tsai, T. S. Wang, J. S. Hwang, M. C. Chen, and G. C. Chi, Appl. Phys. Lett, 93, 262102 (2008).
  11. [5] A. G. Bhuiyan, A, Hashimoto, and A. Yamamotoa, J. Appl. Phys 94, 5 (2003).
  12. [6] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, Nano Lett. 64, 1687 (1994).
  13. [7] H. Y. Cha, H. Wu, Chandrashekhar, Y. C. Choi, S. Chae, G. Koley, and M. G. Spnecer, Nanotechnology. 17, 1264 (2006).
  14. [8] M. W. Lee, H. C. Hsueh, H. M. Lin, and C.-C. Chen, Phys. Rev. B. 67, 164309 (2003).
  15. [9] 林文偉, 郭艷光, 劉柏挺, 物理雙月刊,廿五卷四期582, (2003).
  16. [10] Philips Research Laboratories gh-Tech Campus in Eindhoven (The Netherlands) Research,nanowires
  17. [14] Simon M. Sze, Semiconductor Device Physics and Technology 2ed (Wiley, New York, September 2001).
  18. [15] 林財庫, 近代物理的回顧與展望, 第二十三章 系統典範和系統進化論,Onsager的對易原理(Reciprocal principle).
  19. [17] A. E. Hansen, M. T. Björk, C. Fasth, C. Thelander, and L. Samuelson, Phys. Rev. B. 71, 205328 (2005).
  20. [19] C. C. Chen, C. C. Yeh, C. H. Chen, M.Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, L. C. Chen, J. Y. Peng, Y. F. Chen, J. Am. Chem. Soc. 123, 2791 (2001).
  21. [20] Wu Y., Fan R., Yang P., Int. J. Nanosci. 1. 1-39 (2002).
  22. [22] 陳貴賢,吳季珍, 物理雙月刊,廿三卷六期609 (2001).
  23. [23] Focused Ion Beam Irradiation Induced Damages on CMOS and Bipolar Technologies.ISTFA. p49 (1998).