Title

表面溝槽鑲嵌FRP複材補強效率暨介面瑕疵檢測之研究

Translated Titles

Investigation of strengthening efficiency of beams strengthened by near-surface mounted FRP and detection of flaws at strengthening interfaces

Authors

蔡坤佑

Key Words

表面溝槽鑲嵌強化纖維複材 ; 介面瑕疵 ; 環氧樹脂 ; near-surface mounted FRP ; flaws at strengthening interfaces ; epoxy

PublicationName

中興大學土木工程學系所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

林宜清

Content Language

繁體中文

Chinese Abstract

現今各種鋼筋混凝土結構物補強方法中,以貼片補強工法(鋼板或纖維材料)應用最為廣泛,但近年來「表面溝槽鑲嵌強化纖維複材」(Near-Surface mounted FRP)也逐漸受到重視,其基本原理為鑲嵌高拉力強度材料(如碳纖維,玻璃纖維,人造纖維等複合材料)於結構物的構件表面溝槽內,以提升構件之撓曲強度、剪力強度與韌度等結構性能,且不會對原結構物的外觀及尺寸產生很大的變化。本研究對一般RC梁進行補強,再輔以載重試驗,探討補強效率與破壞型式間的關係。而補強材料與原混凝土之黏結介面影響補強甚鉅,故預埋人工瑕疵以模擬補強介面之瑕疵,並使用敲擊回音法檢測其介面瑕疵,探討瑕疵型式及位置對頻譜檢測結果之影響。 實驗結果顯示鑲嵌不同支數碳纖維螺桿對於梁承載力提升效果有顯著的不同,鑲嵌一支時,補強效率(22.80%)遠小於鑲嵌兩及三支補強效率(81.18%及97.30%),觀察破壞模式可驗證其碳纖維螺桿與環氧樹脂(Epoxy)是否有完全發揮其補強效用。補強介面是否產生瑕疵則可由頻譜圖之頻率知其相關性,當Epoxy完整黏結混凝土與FRP時介面瑕疵不存在其溝槽底部反射波頻率為53kHz,模擬底部產生脫層瑕疵其溝槽底部反射波頻率明顯降為33kHz。

English Abstract

Nowadays the deteriorated concrete structures are commonly strengthened by the externally bonded FRP laminates. Recently, the use of near-surface mounted FRP bars as a strengthening technique became popular. In the near-surface mounted method, grooves are first cut into the concrete with a depth less than the cover of reinforcing bars in a reinforced concrete element. Subsequently, the FRP reinforcement is placed in the grooves and bonded with an epoxy paste. The near-surface mounted FRP method can increase the flextural strength, shearing resistance, and ductility without changing the size and the appearance of original structural members. In this thesis, general RC beams were strengthened by the near-surface mounted FRP bars. Loading tests were carried out on the original beams and the strengthened beams to investigate the failure types and the strengthening efficiency. The performance of the near-surface mounted FRP system relies mainly on epoxy that should provide sufficient strength to bond the FRP to the concrete and bear all the stress transfer with FRP in the groove. Therefore, this thesis also studies the feasibility of using the impact-echo method for flaw detection at the interface between concrete and epoxy. Experimental results show that the increase in bearing capacity of the strengthened specimen varies with the number of FRP bars mounted. The strengthening efficiency for beams strengthened by only one FRP bar is far below that for beams having two or three bars. The strengthening function of FRP bar and epoxy can be found by observation of the failure modes of the strengthened beams after test. In addition, the impact-echo response can be used to identify the existence of flaws at the interface between concrete and epoxy. A dominant frequency of 53 kHz is observed in the impact-echo spectrum for the flaw-free cases. A shift of the frequency from 53 kHz to 33 kHz indicates the existence of the bottom debonding flaw at the epoxy-concrete interface.

Topic Category 工學院 > 土木工程學系所
工程學 > 土木與建築工程
Reference
  1. 1. L. De Lorenzis, J.G. Teng, “Near-surface mounted FRP reinforcement: An emergingtechnique for strengthening structures,”Composites: Part B 38 (2007) 119–143.
    連結:
  2. 2. W.C. Tang, R.V. Balendran, A. Nadeem, H.Y. Leung, “Flexural strengthening of reinforced lightweight polystyrene aggregate concrete beams with near-surface mounted GFRP bars,“Building and Environment 41 (2006) 1381–1393.
    連結:
  3. 3. J.A.O. Barros, A.S. Fortes, “Flexural strengthening of concrete beams with CFRPlaminates bonded into slits,”Cement & Concrete Composites 27 (2005) 471–480.
    連結:
  4. 4. Hassan T, Rizkalla S., “Bond mechanism of near-surface-mounted fiber-reinforced polymer bars for flexural strengthening of concrete structures,”ACI Structural Journal 101(6) (2004) 830–9.
    連結:
  5. 5. R. El-Hacha, S.H. Rizkalla, “Near-surface-mounted fiber-reinforced polymer reinforcements for flexural strengthening of concrete structures,”ACI Structural Journal 101(5) 2004 717–26.
    連結:
  6. 6. L. De Lorenzis, A. Nanni, “Shear strengthening of reinforced concrete beams with NSM fiber-reinforced polymer rods,”ACI Structural Journal 98(1) (2001) 60–8.
    連結:
  7. 7. J.A.O. Barros , S.J.E. Dias, “Near surface mounted CFRP laminates for shear strengthening of concrete beams,”Cement & Concrete Composites 28 (2006) 276–292.
    連結:
  8. 8. D. Novidis, S.J. Pantazopoulou 1, E. Tentolouris, “Experimental study of bond of NSM-FRP reinforcement,”Construction and Building Materials 21 (2007) 1760–1770.
    連結:
  9. 9. L. De Lorenzis, A. Rizzo, A. La Tegola, “A modified pull-out test for bond of near-surface mounted FRP rods in concrete,”Composites: Part B 33 (2002) 589–603.
    連結:
  10. 10. T. Hassan, S. Rizkalla, “Investigation of bond in concrete structures strengthened with near surface mounted carbon fiber reinforced polymer strips,”ASCE J Compos Constr 7(3) 2003 248–57.
    連結:
  11. 11. T. Hassan, S. Rizkalla, “Bond mechanism of near-surface-mounted fiber-reinforced polymer bars for flexural strengthening of concrete structures,”ACI Structural Journal 101(6) 2004 830–9.
    連結:
  12. 12. J.G. Teng, L. De Lorenzis, B. Wang, L. Rong, T.N. Wong, L. Lam, “Debonding failures of RC beams strengthened with near-surface mounted CFRP strips,”J Compos Constr, ASCE 10(2) 2006 92–105.
    連結:
  13. 13. L. De Lorenzis, A. Nanni, “Bond between NSM fiber-reinforced polymer rods and concrete in structural strengthening,”ACI Structural Journal 99(2) 2002 123–32.
    連結:
  14. 14. 15.D.J. Oehlers, R. Rashid, R. Seracino, “IC debonding resistance of groups of FRP NSM strips in reinforced concrete beams”Construction and Building Materials, in press (2008), available online at www.sciencedirect.com.
    連結:
  15. 15. L. De Lorenzis, K. Lundgren, A. Rizzo, “Anchorage length of nearsurface mounted FRP bars for concrete strengthening – experimental investigation and numerical modeling,”ACI Structural Journal 101(2) (2004) 269–78.
    連結:
  16. 16. American Concrete Institute Technical Committee 440, “Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures,”ACI 440.2R-02, 2002.
    連結:
  17. 18. American Concrete Institute Technical Committee 440, “Guide for the design and construction of concrete reinforced with FRP bars,”ACI 440.1R-03, 2003.
    連結:
  18. 19. C. Scarponi, G. Briotti, “Ultrasonic technique for the evaluation of delaminations on CFRP, GFRP, KFRP composite materials,”Composites: Part B 31 (2000) 237–243.
    連結:
  19. 20. F. Bastianini, A. Di Tommaso, G. Pascale, “Ultrasonic non-destructive assessment of bonding defects in composite structural strengthenings,”Composite Structures 53 (2001) 463-467.
    連結:
  20. 21. N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, T. Ogisu, “Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,”Composites Science and Technology 65 (2005) 2575–2587.
    連結:
  21. 22. J.R. Brown, H.R. Hamilton, “Heating methods and detection limits for infrared thermography inspection of fiber-reinforced polymer composite,”ACI Materials Journal 104(5) (2007) 481-490.
    連結:
  22. 23. F. Just-Agosto, D. Serrano, B. Shafiq, A. Cecchini, “Neural network based nondestructive evaluation of sandwich composites,”Composites: Part B 39 (2008) 217–225.
    連結:
  23. 24. T. Sakagami, S. Kubo, “Development of a new non-destructive testing technique for quantitative evaluations of delamination defects in concrete structures based on phase delay measurement using lock-in thermography,” Infrared Physics& Technology, 43 (2002) 311-316.
    連結:
  24. 25. J.M. Levar, H.R. Hamilton III, “Nondestructive evaluation of carbon fiber-reinforced polymer-concrete bond using infrared thermography,” ACI Materials Journal 100(1) (2003) 63-72.
    連結:
  25. 26. G. Kistera,_, D. Wintera, R.A. Badcocka, Y.M. Gebremichaelb, W.J.O. Boyleb, B.T. Meggittc, K.T.V. Grattanb, G.F. Fernandod, “Structural health monitoring of a composite bridge using Bragg grating sensors. Part 1: Evaluation of adhesives and protection systems for the optical sensors,”Engineering Structures 29 (2007) 440–448.
    連結:
  26. 27. J.M. Park, D.S. Kim, S.J. Kim, P.G. Kim, D.J. Yoon, K. L. DeVries, “Inherent sensing and interfacial evaluation of carbon nanofiber and nanotube/epoxy composites using electrical resistance measurement and micromechanical technique,”Composites: Part B 38 (2007) 847–861.
    連結:
  27. 28. J.M. Park, S.I. Lee, K. L. DeVries, “Nondestructive sensing evaluation of surface modified single-carbon fiber reinforced epoxy composites by electrical resistivity measurement,”Composites: Part B 37 (2006) 612–626.
    連結:
  28. 17. Fib TG9.3. “Externally bonded FRP reinforcement for RC structures, “Technical report on the design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures,”International Federation for Structural Concrete, Lausanne, 2001.
  29. 29. 李有豐、朱國棟,「碳纖維強化高分子複合材料之材料測試標準與施工驗收準則之延擬」,結構工程,第十五卷,第三錡,第77-99頁,200.09。
  30. 30. 稻坦道夫、大谷杉郎、大谷朝男著,賴耿陽譯,「碳材料碳纖維工學」,複漢出版社,1986。
  31. 31. 馬振基,高分子複合材料,正中書局,1995。
  32. 32. 李宗銘(2003)環氧樹脂奈米混成材料技術。化工技術,11(11):126-137
  33. 33. 黃清澤、陳幹男,「可架橋式高分子應用開發研究計劃」。
Times Cited
  1. 謝嘉聰(2016)。應用敲擊回音法進行表面溝槽鑲嵌CFRP補強梁環氧樹脂與混凝土介面脫黏瑕疵檢測及室外暴露劣化評估。中興大學土木工程學系所學位論文。2016。1-80。