Title

鐵鉑/氧化矽薄膜之微結構及磁性質研究

Translated Titles

The microstructure and magnetism in FePt-SiOx thin films

DOI

10.6845/NCHU.2009.00656

Authors

邱宜倫

Key Words

雙離子束濺鍍系統 ; 矯頑磁力 ; 序化 ; ion-beam deposition technique ; coercivity ; order

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

林克偉

Content Language

繁體中文

Chinese Abstract

本研究利用超高真空濺鍍系統製備鐵-鉑(20 nm,共鍍方式)及鐵/鉑 (多層膜濺鍍方式)薄膜,再利用雙離子束濺鍍系統在兩種不同的鐵鉑薄膜頂端鍍上不同氧含量的氧化矽(15 nm,0~41% O2/Ar),並探討試片經熱處理後之微結構及磁性質。 X光繞射及電子顯微鏡研究顯示:共鍍及多層膜製備之鐵鉑/氧化矽薄膜,其初鍍膜由非序化之fcc 鐵鉑相(a~3.81 Å)組成,主要由於鐵鉑互相混合所致。其晶粒大小約為3~16 nm。這些初鍍膜具有軟磁之性質,其矯頑磁力約為35 Oe。 共鍍方式之鐵-鉑/氧化矽薄膜經550℃、10分鐘熱處理後產生序化之fct 鐵鉑合金相(a~3.83 Å,c~3.70 Å),其序化度約為0.7。鐵鉑晶粒大小約為20~80 nm。且晶界之氧化矽均勻將鐵鉑晶粒隔離,主要由於氧化矽之表面能較鐵、鉑及鐵鉑低所致。此結構變化導致退火後鐵-鉑/氧化矽薄膜具有硬磁之性質,其矯頑磁力約為13 kOe。多層膜濺鍍方式之鐵/鉑/氧化矽薄膜,其結構及磁性質與共鍍方式之鐵-鉑/氧化矽薄膜接近。但氧化矽經退火後仍無法穿透至底層之鐵/鉑薄膜以分散鐵鉑晶粒,可能由於較厚之鐵/鉑多層膜,其有序排列及熱處理過程鐵鉑合金相之形成阻隔氧化矽之穿透所致。 共鍍方式及多層膜濺鍍方式之鐵鉑/氧化矽薄膜經不同退火溫度研究顯示:當退火溫度大於400℃時開始產生序化之鐵鉑合金相,且其矯頑磁力隨退火溫度上升而上升,主要由於鐵鉑產生非序化軟磁至序化硬磁鐵鉑合金相變化所致。

English Abstract

We have shown that the structural and magnetic properties of [Fe-Pt] thin films. The co-sputtered FePt films and [Fe/Pt]10 multilayers on SiOx substrates were prepared by a ultrahigh vacuum (UHV) magnetron sputtering system while the capping SiOx layer was prepared by using a dual ion-beam deposition technique (with mixture of O2/Ar gas that was varied from 8% to 41% O2/Ar). Samples were annealed at 550 °C for 10 mins in a UHV chamber. Then, we selected that the highest ordering parameter of specimen (30% O2/Ar) and we changed different anneal temperature (300°C ~700°C), fixed the same anneal time (10 mins),and researched the structural and magnetic properties of FePt thin films. The structures of as-deposited [Fe-Pt]-SiOx and [Fe/Pt]10/SiOx (0 to 41% O2/Ar) consisted of fcc FePt (a~ 3.81 Å) phases that resulted from intermixing of Fe and Pt during deposition. The grain sizes ranged from 2.5 to 16 nm. The coercivity of the as-deposited [Fe-Pt]-SiOx about Hc⊥~ 42 to 783 Oe, and Hc//~ 0 to 35 Oe. The coercivity of the as-deposited [Fe/Pt]10 /SiOx about Hc⊥~ 210 to 744 Oe, and Hc//~ 0 to 36 Oe. That are mainly from the magnetically soft Fe phase. The [Fe-Pt]-SiOx and [Fe/Pt]10/SiOx (annealed at 550 °C for 10 mins) exhibit ordered L10 FePt phases (a~ 3.83 Å, c~ 3.70 Å). The grain sizes ranged from 20 to 80 nm. We discovered the role of the top SiOx layer during post-annealing is to form grain boundaries and to separate the FePt grains in the [Fe-Pt]-SiOx system, but [Fe/Pt]10/SiOx still is part of continuous film. Because the structure of multilayer is more inseparable, and the capping SiOx layer is not easy to diffuse into FePt layer. The maximum coercivity [Fe-Pt]-SiOx was Hc⊥~ 13.6 kOe and H//~ 12.9 kOe (8% O2/Ar). The maximum coercivity [Fe/Pt]10/SiOx was Hc⊥~ 11.7 kOe and H//~ 13 kOe (0% O2/Ar). That is attributed to the formation of a hard L10 FePt phase from the annealing. We have shown that the magnetometry evidence of [Fe-Pt]-SiOx and indicated the negative δM value at all applied fields (dipole interaction). Comparative, the magnetometry evidence of [Fe/Pt]10/SiOx was positive δM value at all applied fields (strong ferromagnetic interaction). The magnetic domain structures of annealed [Fe-Pt]-SiOx that typical interconnected domain patterns were observed. In addition, the clear magnetic contrast is likely attributed to the strong stray field due to isolated magnetic grains. In the part of different anneal temperature, when [Fe-Pt]-SiOx and [Fe/Pt]10/SiOx (30% O2/Ar) at 300°C and have the same structure with as-deposited. The film did not order. Phase transformation from fcc to fct at temperature great than 400°C. Significant grain growth(~40 to 100 nm) with increasing annealing temperature as well as structurechanges to fct FePt. At 300°C, the film have small Hc⊥ due to soft magnetic properties (disordered FePt). Hc increases linearly with Tann> 400 °C due to ordered FePt formation (the maximum coercivity was Hc~ 16 kOe).

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [4] F. T. Yuan, D. H. Wei, H. W. Chang, S. K. Chen, H. W. Huang, S. N. Hsiao, A. C. Sun, H. Y. Lee, and Y. D. Yao, J. Appl. Phys. 103, 07E115 (2008).
    連結:
  2. [16] P. Villars and L. D. Culvert, “Pearson’s Handbook of Crystallographic Data for Intermetallic Phase”, ASM, Materials Park, (1991).
    連結:
  3. [21] T. Suzuki, N. Honda, and K. Ouchi, IEEE Trans. Magn. 35, 2748 (1999).
    連結:
  4. [22] Takeshi Saito, Osamu Kitakami, Yutaka Shimad, J. Magn. Magn. Mater. 239, 310 (2002).
    連結:
  5. [24] B. C. Lim, J. S. Chen, J. P. Wang, J. Magn. Magn. Mater. 271, 431 (2004).
    連結:
  6. [27] An-Cheng Sun, Jen-Hwa Hsu, H. L. Huang, and P. C. Kuo, J. Appl. Phys. 98, 076109 (2005).
    連結:
  7. [29] Yun-Chung Wu, Liang-Wei Wang, Chih-Huang Lai, and Ching-Ray Chang, J. Appl. Phys. 103, 07E140 (2008).
    連結:
  8. [31] A. C. Sun , Y. C. Tsai, Jen-Hwa Hsu , P. C. Kuo , and H. L. Huang, J. Magn. Magn. Mater. 320, 3169 (2008).
    連結:
  9. [32] Chih-Huang Lai, Yun-Chung Wu, and Chao-Chien Chiang, J. Appl. Phys. 97, 10H305 (2005).
    連結:
  10. [34] 國立台灣大學材料科學與工程所博士論文,低序化溫度LI0 FePt合金薄膜的製備及其應用於垂直磁記錄媒體之研究,孫安正,民國94年。
    連結:
  11. [36] J. J. Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology : principles, deposition, film modification, and synthesis", Noves Publication, 1989.
    連結:
  12. [39] David B. Williams and C. Barry Carter, “Transmission Electron Microscopy", Plenum Press, 1996.
    連結:
  13. [40] David Jiles, “Magnetism and Magnetic Materials", Chapman & Hall, 1991.
    連結:
  14. (2004)
    連結:
  15. [46] D. J. Sellmyer, M. Yan, Y. Xu, and R. Skomski, IEEE Trans. Magn. 41, 560 (2005).
    連結:
  16. [1] M. Yu. Liu, and D. J. Sellmyer, J. Appl. Phys. 87, 6965 (2000).
  17. [2] Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Eest, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Doerner, IEEE Trans. Magn. 36, 10 (2000).
  18. [3] 金重勳主編,“磁性技術手冊",中華民國磁性技術協會, 2002.
  19. [5] D. T. Margulies, M. E. Schabes, N. Supper. H. Do, A. Berger, A. Moser, P. M. Rice, P. Aenett, M. Madison, B. Lengsfield, H. Rosen, and Eric E. Fullerton, Appl. Phys. Lett. 85, 6200 (2004).
  20. [6] P. C. Kuo, and Y. D. Yao, C. M. Kuo, and H. C. Wu, J. Appl. Phys. 87, 6146 (2000).
  21. [7] J. S. Chen, Yingfan Xu, and J. P. Wang, J. Appl. Phys., 93, 16615 (2003).
  22. [8] Chih-Huang Lai, Cheg-Han Yang, and C. C. Chiang, Appl. Phys. Lett. 83, 22 (2003).
  23. [9] Seong-Rae Lee, Sanghyun Yang, Young Keun Kim, and Jong Gab Na, Appl. Phys. Lett. 78, 4001 (2001).
  24. [10] Yasushi Endo, Nobuaki Kikuchi, Osamu Kitakami, and Yutaka Shimada, J. Appl. Phys., 89, 7065 (2001).
  25. [11] K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, Appl. Phys. Lett. 84, 404 (2004).
  26. [12] Chih-Huang Lai, Yun-Chung Wu, and Chao-Chien Chiang, J. Appl. Phys. 97, 10H305 (2005).
  27. [13] C. Denis Mee and Eric D. Daniel, “Magnetic Recording Technology",second edition, 1995.
  28. [14] M. Yu, Y. Liu, A. Moaer, D. Weller, and D. J. Sellmyer, Appl. Phys. Lett. 75, 3992 (1999).
  29. [15] H. Okamoto, “Binary Alloy Phase Diagrams",Vol 2, ASM International, 2 nd edition, 1992.
  30. [17] Magnetic Nanostructures, edited by Hari Singh Nalwa, Stevenson Ranch, Calif. “American Scientific Publishers”,c2002.
  31. [18] Kyung-Hwan Na, Jong-Gab Na, Hi-Jung Kim, Pyung-Woo Jang, Jong-Ryoul Kim, and Sung-Rae Lee, IEEE Trans. Magn. 37, 1312 (2001).
  32. [19] J. P. Liu, C. P. Luo, Z. S. Shan, and D. J. Sellmyer, J. Appl. Phys. 81, 5644 (1997).
  33. [20] Yun-Chung Wu, Liang-Wei Wang, and Chih-Huang Lai, Appl. Phys. Lett. 91, 072502 (2007).
  34. [23] J. S. Chen, Yingfan Xu, and J. P. Wang, J. Appl. Phys. 93, 1661 (2003).
  35. [25] S. C. Chen, P. C. Kuo, S. T. Kuo, A. C. Sun, C. Y. Chou, and Y. H. Fang, IEEE Trans. Magn. 41, 915 (2005).
  36. [26] D. H. Wei, K. L. You, Y. D. Yao, Y. Liou, T. S. Chin, and C.C. Yu, J. Magn. Magn. Mater. 304, e231 (2006).
  37. [28] G. R. Trichy, D. Chakraborti, J. Narayan, and H. Zhou, J. Appl. Phys. 102, 033901 (2007).
  38. [30] Y. Ding, D. H. Wei, and Y. D. Yao, J. Appl. Phys. 103, 07E145 (2008).
  39. [33] Yun-Chung Wu, Liang-Wei Wang, M. Tofizur Rahman, and Chih-Huang Lai, J. Appl. Phys. 103, 07E126 (2008).
  40. [35] 雙離子束濺鍍系統操作手冊
  41. [37] B. D. Cullity and S. R. Stock, “Element of X-ray Diffraction", Prentice-Hall, Inc., 2001.
  42. [38] 汪建民主編, “材料分析",中國材料科學學會,1998.
  43. [41] P. E. Kelly, K. O’Grady, P. I. Mayo, and R. W. Chantrell, IEEE Trans. Magn. 25, 3881 (1989).
  44. [42] T. Seki, T. Shima, K. Takanashi and E. Matsubara, Appl. Phys. Lett. 82, 2461
  45. [43] K. H. J. Buschow, “Concise Encyclopedia of magnetic and Superconducting materials. "
  46. [44] 汪島軍、馬仁宏、陳亙佑、蔡斯凱、林建智,“原子力顯微鏡專利地圖及分析"。
  47. [45] Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, and K. Hono, J. Appl. Phys. 95, 5 (2004).
  48. [47] J.-S. Kim, Y.-M. Koo, and N. Shin, J. Appl. Phys. 100, 093909 (2006).
  49. [48] T. J. Klemmera, C. Liua, N. Shuklaa, X. W. Wua, D. Wellera, M. Tanaseb, D.E. Laughlinb, and W. A. Soffac, J. Magn. Magn. Mater. 266, 79 (2003).
  50. [49] J.-Y. Guo, C.-Y. Liu, H. Ouyang, K.-W. Lin, C.-J. Tsai, J. van Lierop, N. N. Phuoc, and T. Suzuki, Phys. Stat. Sol. (c) 4, 4512 (2007).
  51. [50] A.C.Sun, Jen-HwaHsu, P.C.Kuo, and H.L.Huang, J. Magn. Magn. Mater. 320, 3071 (2008).
  52. [51] T. Katayama, T. Sugimoto, Y. Suzuki, M. Hashimoto, P. de Haan, and J.C. Lodder, J. Magn. Magn. Mater. 104, 1002 (1992).
Times Cited
  1. 吳宜靜(2010)。氧含量對鈷鉑及鐵鉑薄膜之影響。中興大學材料科學與工程學系所學位論文。2010。1-125。
  2. 陳瑩真(2011)。雙離子束濺鍍對鐵鉑/氧化鉭奈米雙層薄膜之結構及磁性質研究。中興大學材料科學與工程學系所學位論文。2011。1-107。