Title

絕緣上覆矽基材之鎳矽化物薄膜及奈米結構的性質研究

Translated Titles

Properties of nickel silicide thin films and nanostructures on SOI substrates

DOI

10.6845/NCHU.2009.00789

Authors

陳廷軒

Key Words

原子力顯微鏡 ; 鎳矽化物 ; Atomic force Microscopy ; Nickel Silicide

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

許薰丰

Content Language

繁體中文

Chinese Abstract

在半導體元件中,低電阻率金屬矽化物應用於金屬接觸、閘電極或元件間連線,其導電性質在奈米尺度下,材料展現的性質與大尺寸時不同,影響它在奈米電子元件的應用性。隨著半導體製程的微縮,金屬矽化物奈米線的性質研究的重要性隨之增加。掃描探針顯微鏡微影術其優點在於不需超高真空的環境,以簡單的步驟就能製作奈米元件為製作奈米結構的技術中費用低且適合實驗室研究的方法。 SOI(Silicon On Insulator)是目前半導體製程中廣泛使用的基材,優點是可以較易提升元件時脈,並減少漏電為省電元件,為製程微縮所帶來之電晶體結構問題提供解決方案的主要技術之一。 由於鎳矽化物在半導體元件進入奈米尺寸世代後,為深具發展潛力之候選者,為了瞭解鎳矽化物於次奈米尺寸下之性質,本實驗選擇在SOI與Si基板生成鎳矽化物薄膜,探討不同的基材對於鎳矽化物熱穩定性的影響。第二部份則是利用掃描探針顯微鏡微影術製結合選擇性蝕刻製作鎳矽化物奈米線,探討不同線寬尺寸和不同熱處理溫度對鎳矽化物奈米線生成之影響。 研究結果顯示,在矽基板上鍍10 nm鎳經500 ℃ RTA開始產生團聚現象,並在600 ℃開始有NiSi2相生成。相較於SOI基板,退火溫度從400-700 ℃,片電阻約9 Ω/□,且皆為連續的NiSi薄膜,利用SOI基板可提升NiSi薄膜的熱穩定性。 操控成長鎳矽化物奈米線方面:在400 ℃熱處理條件下,當鎳膜厚度相同時,矽奈米線較窄時易形成鎳含量高的鎳矽化物(Ni2Si),對於較寬的矽奈米線則形成Ni3Si2。退火溫度升高時,則形成鎳含量更高的Ni31Si12相。

English Abstract

Metal silicides have been widely used as self-aligned silicde contacts on source, drain and polycrystalline silicon gate regions of complementary metal oxide semiconductor (CMOS) devices to reduce contact and series resistances. As the dimension of microelectronic devices shrinking into nanometer, the requirements of the metallization in CMOS device integration are important to develop new approach for future applications. Recently, Atomic force microscope lithography is an ease method for the fabrication of nanometer-scale structures and adapts to investigate in laboratory. Silicon on insulator (SOI) refers to the use of a SiO2 layer in place of silicon-insulator-silicon substrate in semiconductor manufacturing, to reduce parasitic device capacitance and thereby improving performance. SOI-based devices differ from conventional silicon-built devices in that the silicon junction is above an electrical insulator. The choice of insulator depends largely on intended application to used for radiation-sensitive applications and silicon dioxide preferred for improving performance and diminishing short channel effects in microelectronics devices. The low-resistivity NiSi is the most promising material because of its electrical properties and appropriate work function. Therefore, in the first part of this study, the effects of the substrates (Si and SOI) on the formation of ultrathin Ni silicide films were studied. In the second part, the growth of Ni silicide nanowires by AFM field-induced local oxidation lithography with KOH-based silicon anisotropic wet chemical etching on SOI substrates. We focused on studying the effects of the size of Si nanowires and the annealing temperature on the formation of Ni silicide nanowires. The results show as follows. For 10 nm Ni/Si(100) samples, the silicide films agglomerated by annealing at 500 ℃. NiSi2 phase was formed at 600 ℃annealing. Comparing with the 10 nm/SOI samples, the NiSi films were continuous at the annealing temperatures from 400 to 700 ℃ and their sheet resistances were 9 Ω/□. The thermal stability of ultrathin NiSi layer was enhanced using SOI substrates. For 10 nm Ni/Si nanowires on SOI samples, the narrow Si nanowires were formed Ni2Si phase at 400 ℃annealing, and the wide ones were formed Ni3Si2 phase. When the sample annealed at 600 ℃, the Ni31Si12 phase was formed.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [1] R. Mukai, S. Ozawa, H. Yagi, "Compatibility of NiSi in the self-aligned silicide process for deep submicrometer devices", Thin Solid Films 270, 567 (1995).
    連結:
  2. [3] P.S. Lee, K.L. Pey, D. Mangelinck, J. Ding, D.Z. Chi and L. Chan, "New salicidation technology with Ni(Pt) alloy for MOSFETs" IEEE Electron Device Lett. 22, 568 (2001).
    連結:
  3. [4] R. Garcia, M. Calleja, H. Rohrer, "Patterning of silicon surfaces with noncontact atomic force microscopy : Field-induced formation of nanometer-size water bridges", J. Appl. Phys. 86, 1898 (1999).
    連結:
  4. [5] F.P. Murano, G. Abadal, N. Barniol, X. Aymerich, J. Servat, P. Gorostiza, F. Sanz, "Nanometer-scale oxidation of Si(100) surfaces by tapping mode atomic force microscopy", J. Appl. Phys. 78, 6797 (1995).
    連結:
  5. [6] M. Ringger, H.R. Hidber, R. Schlogl, P. Oelhafen, H.J. Guntherodt, "Nanometer lithography with the scanning tunneling microscope", Appl. Phys. Lett. 46, 832 (1985).
    連結:
  6. [7] J.A. Dagata, J. Schneir, H.H. Harary, C.J. Evans, M.T. Postek, J. Bennett, "Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air", Appl. Phys. Lett. 56. 2001 (1990).
    連結:
  7. [8] E. S. Snow and P. M. Campbell, "Fabrication of Si nanostructures with an atomic force microscope", Appl. Phys. Lett. 64, 1932 (1994).
    連結:
  8. [9] T. Teuschler, K. Mahr, S. Miyazaki,a) M. Hundhausen, L. Ley, "Nanometer-scale field-induced oxidation of Si(111):H by a conducting-probe scanning force microscope : Doping dependence and kinetics", Appl. Phys. Lett. 67, 3144 (1995).
    連結:
  9. [10] A. E. Gordon, R. T. Fayfield, D. D. Litfin, T. K. Higman, "Mechanisms of surface anodization produced by scanning probe microscopes", J. Vac. Sci. Technol. B 13, 2805 (1995).
    連結:
  10. [11] D. Stievenard, P. A. Fontaine, E. Dubois, “Nanooxidation using a scanning probe microscope: An analytical model based on field induced oxidation", Appl. Phys. Lett. 70, 3272 (1997).
    連結:
  11. [12] P. Avouris, T. Hertel, R. Martel, “Atomic force microscope tip-induced local oxidation of silicon : kinetics, mechanism, and nanofabrication", Appl. Phys. Lett. 71, 285 (1997).
    連結:
  12. [13] J. A. Dagata, T. Inoue, J. Itoh, H. Yokoyama, “Understanding scanned probe oxidation of silicon", Appl. Phys. Lett. 73, 271 (1998).
    連結:
  13. [14] J. A. Dagata, T. Inoue, J. Itoh, H. Yokoyama, “Role of space charge in scanned probe oxidation", J. Appl. Phys. 84, 6891 (1998).
    連結:
  14. [16] K.D. Been, "Anisotropic etching of silicon", IEEE Trans. Electron Devices,Vol.ED-25, 1185 (1978).
    連結:
  15. [17] J.C. Greenwood, "Ethylendiamine-Catechol-Water Mixture Shows Preferential Etching of p-n Junction", J. Electrochem. Soc. 116, 1325 (1969).
    連結:
  16. [18] H. Seidel, L. Csepregi, A. Heuberger, H. BaumgSrtel "Anisotropic Etching of Crystalline Silicon in Alkaline Solutions", J. Electrochem. Soc. 137, 3612 (1990).
    連結:
  17. [19] F.S.S. Chien, C.L. Wu, Y.C. Chou, T.T. Chen, S. Gwo, "Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching", Appl. Phys. Lett. 75, 2429(1999).
    連結:
  18. [20] Y.Y. Zhang, J. Zhang, G. Luo1, X. Zhou, G.Y. Xie, T. Zhu1. Z. F. Liu1, "Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching", Nanotechnology 16, 422 (2005).
    連結:
  19. [21] T.P. Chow, J. Steckl, "Refractory metal silicides: Thin-film properties and processing technology", IEEE Transacions on Electron Devices ED-30, 1480 (1983).
    連結:
  20. [22] B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yua, "Synthesis and field emission properties of TiSi2 nanowires", Appl. Phys. Lett. 86, 243103 (2005).
    連結:
  21. [23] S. Zhou, X. Liu, Y. Lin, D. Wang, "Spontaneous growth of highly conductive two-dimensional single - crystalline TiSi2 nanonets", Angew. Chem. 47, 7681 (2008).
    連結:
  22. [24] J. Du, Z. Ren, K. Tao, A. Hu, P. Hao, A. Huang, G. Zhao, W. Weng, G. Han, P. Du, "Self-induced preparation of assembled shrubbery TiSi nanowires by chemical vapor deposition", Cryst. Growth Des. 8, 3543 (2008).
    連結:
  23. [25] Y.C. Chou, W.W. Wu, S.L. Cheng, B.Y. Yoo, N. Myung, L.J. Chen, K.N. Tu, "In-situ TEM Observation of repeating events of nucleation in epitaxial growth of nano CoSi2 in nanowires of Si", Nano Lett. 8, 2194 (2008).
    連結:
  24. [26] Y. Wu, J. Xiang, C. Yang, W. Lu, C.M. Lieber, “Single-crystal metallic nanowires and metal / semiconductor nanowire heterostructures”, Nature 430, 61 (2004).
    連結:
  25. [27] Decker C.A., Solanki R, Freeouf J.L., Carruthers J.R., Evans D.R., "Directed growth of nickel silicide nanowires", Appl. Phys. Lett. 84, 1389 (2004).
    連結:
  26. [28] Dong L, Bush J, Chirayos V, Solanki R, Jiao J, "Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects", Nano Lett. 5, 2112 (2005).
    連結:
  27. [29] J. Kim and W.A. Anderson, "Spontaneous nickel monosilicide nanowire formation by metal induced growth", Thin Solid Films 483, 60 (2005).
    連結:
  28. [30] J. Kim, W.A. Anderson, "Direct electrical measurement of the self-assembled nickel silicide nanowire", Nano Lett. Vol.6, No.7 1356 (2006).
    連結:
  29. [31] C.Y. Lee, M.P. Lu, K.F. Liao, W.W. Wu, L.J. Chen, "Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties", Appl. Phys. Lett. 93, 113109 (2008).
    連結:
  30. [32] C.Y. Lee, M.P. Lu, K.F. Liao, W.F. Lee, C.T. Huang, S.Y. Chen and L.J. Chen, "Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties", J. Phys. Chem. C 113, 2286 (2009).
    連結:
  31. [33] K.C. Lu, W.W. Wu, H.W. Wu, C.M. Tanner, J.P. Chang, L.J. Chen and K.N. Tu, "In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction", Nano Lett. 7, 2389 (2007).
    連結:
  32. [34] K.C. Lu, K.N. Tu, W.W. Wu, L.J. Chen, B.Y. Yoo, N.V. Myung, "Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSi/Si", Appl. Phys. Lett. 90, 253111 (2007).
    連結:
  33. [35] T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, L. Ley, "Nanometer-scale field-induced oxidation of Si(111):H by a conducting-probe scanning force microscope: doping dependence and kinetics", Appl. Phys. Lett. 67 (21), 3144 (1995).
    連結:
  34. [37] K. Okubo, Y. Tsuchiya, O. Nakatsuka, A. Sakai, S. Zaima, Y. Yasuda, "Influence of Structural Variation of Ni Silicide Thin Films on Electrical Property for Contact Materials", Jpn. J. Appl. Phys. 43, 1896 (2004).
    連結:
  35. [39] S.Y. Tan, C.W. Chen, I.T. Chen, C.W. Feng, "Physical and electrical characterization of Ni–Si Phase transformation", Thin Solid Films 517, 1186 (2008).
    連結:
  36. [40] I. F. Cuesta, X. Borrise, F. P. Murano, "Atomic force microscopy local oxidation of silicon nitride thin films for mask fabrication", Nanotechnology 16, 2731 (2005).
    連結:
  37. [41] R. Garcia, M. Calleja, H. Rohrer, "Patterning of silicon surfaces with noncontact atomic force microscopy : Field-induced formation of nanometer-size water bridges", J. Appl. Phys. 86, 1898 (1999).
    連結:
  38. [43] Y.J. Chen, J.H. Hsu, H.N. Lin, "Fabrication of metal nanowires by atomic microscopy nanoscratching and lift-off process", Nanotechnology 16, 1112 (2005).
    連結:
  39. [44] C. Durkan and M.E. Welland, "Size effects in the electrical resistivity of polycrystalline nanowires", Phys. Rev. B 61, 14215 (2000).
    連結:
  40. [45] J.H. Ko, C.H. Jang, S.H. Kim, Y.J. Song, N.E. Lee, "Formation of nickel silicide and germanosilicide layers on Si(001),relaxed SiGe/Si(001), and strained Si/relaxed SiGe/Si(001)and effect of postthermal annealing", J. Vac. Sci. Technol. A 24, 1468 (2006).
    連結:
  41. [2] H. Jeon, C.A. Sukow, J.W. Honeycutt, G.A. Rozgonyi, R.J. Nemanich, "Morphology and phase stability of TiSi2 on Si", J. Appl. Phys. 71, 4269 (1992).
  42. [15] J.B. Price, "Anisotropic of Silicon with KOH-H2O-IPA", ECD Semiconductor Silicon, 339 (1973).
  43. [36] L. Ley, T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, "Kinetics of field-induced oxidation of hydrogen-terminated Si(111) by means of a scanning force microscope", J. Vac. Sci. Technol. B 14, 2845 (1996).
  44. [38] J.A. Kittl a, M.A. Pawlak, A. Lauwers, C. Demeurisse, T. Hoffmann, A. Veloso, K.G. Anil, S. Kubicek, M. Niwa, M.J.H. van Dal, O. Richard, M. Jurczak, C. Vrancken, T. Chiarella, S. Brus, K. Maex, S. Biesemans, "Phase effects and short gate length device implementation of Ni fully silicided (FUSI) gates", Microelectron. Eng. 83, 2117 (2006)
  45. [42] L.J. Chen, "Silicide technology for integrated circuits", The Institution of Electrical Engineers, London (2004).
Times Cited
  1. 許家豪(2012)。以原子力顯微鏡微影及反應式磊晶成長法於絕緣層覆矽基材上製備鎳矽化物奈米線。中興大學材料科學與工程學系所學位論文。2012。1-59。