Title

miR828在長時間熱逆境下的調控機制之探討

Translated Titles

Study of regulation mechanism of miR828 under long-term heat stress

Authors

陳勇登

Key Words

熱逆境 ; 乾旱逆境 ; miR828 ; MYB ; 花青素 ; 過氧化氫 ; heat stress ; drought stress ; miR828 ; MYB ; anthocyanin ; H2O2

PublicationName

中興大學生命科學系所學位論文

Volume or Term/Year and Month of Publication

2018年

Academic Degree Category

碩士

Advisor

林振祥

Content Language

繁體中文

Chinese Abstract

全球暖化日漸嚴重,溫度的上升無疑會對植物造成很大的傷害,因此了解植物熱逆境的機制與對抗植物熱逆境的方法已是近年科學研究重要的課題。先前的研究中指出很多miRNA與植物的生長、發育、逆境防禦相關,在本研究中,發現在高溫下pri-miR828會被誘導表現,而miR828會觸發 TAS4的切割產生TAS4-siR81去抑制MYB75、MYB90、MYB113,為了進一步探討miR828在熱逆境下的調控機制,以miR828突變株和TAS4突變株與miR828大量表現轉殖株為材料進行實驗,結果發現miR828突變株在逆境下葉綠素含量較野生株來的高且離子滲漏的情形較不嚴重,由此可見miR828確實對植物的耐熱造成影響,為了瞭解原因,我們抽取植株的RNA做基因分析篩選一些可能受miR828/MYB所調控的下游基因,發現在miR828突變株中耐熱相關的基因HSP20、HSFA7B、HTT4表現量都較野生株來的高,此外也發現了很多次級代謝物合成的相關基因 (MYB、bHLH) 與乾旱相關基因 (ERF、DOR) 的表現,於是檢測了花青素含量和H2O2含量,發現miR828突變株有較高的花青素含量且過氧化氫含量是較低的,在乾旱部分發現miR828突變株相較於野生株是有較佳的耐旱性,綜合結果得知miR828突變株可能因為失去了對下游目標基因的調控能力,導致改變MYB、bHLH、ERF的基因表現,因此影響了花青素與H2O2的含量,使植物的耐熱性與耐旱性變得更好。

English Abstract

In recent years, global warming becomes increasingly serious problems, causing negative impacts on plant. Hence, the responsive mechanism and countermeasures of heat stress in plants are important issues. MicroRNAs are small noncoding RNAs with important regulatory plays in plant growth and development, and also participate in stress. Heat stress increased the performance of miR828, which could trigger the cleavage of TAS4 transcripts to produce ta-siRNA. Then, ta-siRNA repressed MYB75, MYB90, and MYB113. To study the plays of miR828 under heat stress, transgenic plants overexpressing miR828 (miR828OE) and T-DNA insertion mutants of miR828 (mir828), and TAS4 (tas4) were used. Results presented that survival rates and chlorophyll contents were better in mir828 mutants than in wild type (WT) under heat stress. Moreover, heat-caused ion leakage of mir828 is lower than WT. These results might reveal that reduction of miR828 abundances enhanced abilities of heat-tolerance in plants. In addition, transcriptome analyses were used to figure out miR828/MYB downstream regulated genes. Expression of heat-related genes, HSP20, HSFA7B, and HTT4, in miR828 mutants were higher than WT. Also, expression of MYB and bHLH genes participated in the synthesis of secondary metabolites and responses of stress were affected in mir828 mutant. The mir828 mutant had higher anthocyanin content and lower H2O2 content compared to WT. In addition, several drought-related genes, such as ERF and DOR, were regulated by miR828 according to transcriptome analyses. Under drought stress, mir828 mutants presented better adaptive abilities compared to WT. Collectively, miR828 might alter the expression of MYB, bHLH, and ERF genes to affect contents of anthocyanin and H2O2. Further, plants enhanced adaptation to heat stress and drought stress.

Topic Category 生命科學院 > 生命科學系所
生物農學 > 生物科學
Reference
  1. 參考文獻
  2. Albihlal, W.S., Obomighie, I., Blein, T., Persad, R., Chernukhin, I., Crespi, M., Bechtold, U., and Mullineaux, P.M. (2018). Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions. Journal of Experimental Botany 69, 2847-2862.
  3. Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207-221.
  4. Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373-399.
  5. Axtell, M.J. (2013). Classification and comparison of small RNAs from plants. Annual Review of Plant Biology 64, 137-159.
  6. Barba, M., Czosnek, H., and Hadidi, A. (2014). Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6, 106-136.
  7. Baulcombe, D. (2004). RNA silencing in plants. Nature 431, 356-363.
  8. Bechtold, U., Richard, O., Zamboni, A., Gapper, C., Geisler, M., Pogson, B., Karpinski, S., and Mullineaux, P.M. (2008). Impact of chloroplastic- and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. Journal of Experimental Botany 59, 121-133.
  9. Bhargava, A., Mansfield, S.D., Hall, H.C., Douglas, C.J., and Ellis, B.E. (2010). MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiology 154, 1428-1438.
  10. Bhargava, A., Ahad, A., Wang, S., Mansfield, S.D., Haughn, G.W., Douglas, C.J., and Ellis, B.E. (2013). The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. Planta 237, 1199-1211.
  11. Bieza, K., and Lois, R. (2001). An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiology 126, 1105-1115.
  12. Bloor, S.J., and Abrahams, S. (2002). The structure of the major anthocyanin in Arabidopsis thaliana. Phytochemistry 59, 343-346.
  13. Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A., and Lamb, C. (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell 12, 2383-2394.
  14. Carre, I.A., and Kim, J.Y. (2002). MYB transcription factors in the Arabidopsis circadian clock. Journal of Experimental Botany 53, 1551-1557.
  15. Catala, R., Medina, J., and Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108, 16475-16480.
  16. Chellappan, P., Xia, J., Zhou, X., Gao, S., Zhang, X., Coutino, G., Vazquez, F., Zhang, W., and Jin, H. (2010). siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Research 38, 6883-6894.
  17. Chen, H., Hwang, J.E., Lim, C.J., Kim, D.Y., Lee, S.Y., and Lim, C.O. (2010a). Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochemical and Biophysical Research Communications 401, 238-244.
  18. Chen, H.M., Chen, L.T., Patel, K., Li, Y.H., Baulcombe, D.C., and Wu, S.H. (2010b). 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences of the United States of America 107, 15269-15274.
  19. Chen, J., Burke, J.J., and Xin, Z. (2018). Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature. BMC Plant Biology 18, 11.
  20. Chen, X., Huang, H., Qi, T., Liu, B., and Song, S. (2016). New perspective of the bHLH-MYB complex in jasmonate-regulated plant fertility in arabidopsis. Plant Signaling & Behavior 11, e1135280.
  21. Di Donato, A., Filippone, E., Ercolano, M.R., and Frusciante, L. (2018). Genome Sequencing of Ancient Plant Remains: Findings, Uses and Potential Applications for the Study and Improvement of Modern Crops. Frontiers in Plant Science 9, 441.
  22. Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., and Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends in Plant Science 15, 573-581.
  23. Felippes, F.F., and Weigel, D. (2009). Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173. EMBO Reports 10, 264-270.
  24. Gao, X., Zhang, F., Hu, J., Cai, W., Shan, G., Dai, D., Huang, K., and Wang, G. (2016). MicroRNAs modulate adaption to multiple abiotic stresses in Chlamydomonas reinhardtii. Scientific Reports 6, 38228.
  25. Garcia-Mata, C., and Lamattina, L. (2003). Abscisic acid, nitric oxide and stomatal closure - is nitrate reductase one of the missing links? Trends in Plant Science 8, 20-26.
  26. Gonzalez, A., Zhao, M., Leavitt, J.M., and Lloyd, A.M. (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal : for Cell & Molecular Biology 53, 814-827.
  27. Guan, Q., Lu, X., Zeng, H., Zhang, Y., and Zhu, J. (2013). Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. The Plant Journal : for Cell & Molecular Biology 74, 840-851.
  28. Guan, X., Pang, M., Nah, G., Shi, X., Ye, W., Stelly, D.M., and Chen, Z.J. (2014). miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nature Communications 5, 3050.
  29. Guimil, S., and Dunand, C. (2006). Patterning of Arabidopsis epidermal cells: epigenetic factors regulate the complex epidermal cell fate pathway. Trends in Plant Science 11, 601-609.
  30. Gururani, M.A., Venkatesh, J., and Tran, L.S. (2015). Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. Molecular Plant 8, 1304-1320.
  31. Hoch, W.A., Zeldin, E.L., and McCown, B.H. (2001). Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiology 21, 1-8.
  32. Holton, T.A., and Cornish, E.C. (1995). Genetics and Biochemistry of Anthocyanin Biosynthesis. The Plant Cell 7, 1071-1083.
  33. Hsieh, L.C., Lin, S.I., Shih, A.C., Chen, J.W., Lin, W.Y., Tseng, C.Y., Li, W.H., and Chiou, T.J. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiology 151, 2120-2132.
  34. Ikeda, M., Mitsuda, N., and Ohme-Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiology 157, 1243-1254.
  35. Ilik, P., Spundova, M., Sicner, M., Melkovicova, H., Kucerova, Z., Krchnak, P., Furst, T., Vecerova, K., Panzarova, K., Benediktyova, Z., and Trtilek, M. (2018) . Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating. The New Phytologist 218, 1278-1287.
  36. Jiang, C., Gu, J., Chopra, S., Gu, X., and Peterson, T. (2004). Ordered origin of the typical two- and three-repeat Myb genes. Gene 326, 13-22.
  37. Johnson, M.P. (2016). Photosynthesis. Essays in Biochemistry 60, 255-273.
  38. Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B. (2006). MicroRNAS and their regulatory roles in plants. Annual Review of Plant Biology 57, 19-53.
  39. Kangasjarvi, S., Lepisto, A., Hannikainen, K., Piippo, M., Luomala, E.M., Aro, E.M., and Rintamaki, E. (2008). Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. The Biochemical Journal 412, 275-285.
  40. Khanna, P., Kaur, K., and Gupta, A.K. (2016). Salicylic acid induces differential antioxidant response in spring maize under high temperature stress. Indian Journal of Experimental Biology 54, 386-393.
  41. Khraiwesh, B., Zhu, J.K., and Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta 1819, 137-148.
  42. Kim, K.C., Lai, Z., Fan, B., and Chen, Z. (2008). Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. The Plant Cell 20, 2357-2371.
  43. Lai, L.B., Nadeau, J.A., Lucas, J., Lee, E.K., Nakagawa, T., Zhao, L., Geisler, M., and Sack, F.D. (2005). The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage. The Plant Cell 17, 2754-2767.
  44. Larkindale, J., and Knight, M.R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology 128, 682-695.
  45. Leng, P., and Qi, J.X. (2003). Effect of anthocyanin on David peach (Prunus davidiana Franch) under low temperature stress. Sci Hortic-Amsterdam 97, 27-39.
  46. Lesk, C., Rowhani, P., and Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature 529, 84-87.
  47. Li, N., Wu, H., Ding, Q., Li, H., Li, Z., Ding, J., and Li, Y. (2018). The heterologous expression of Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato. Functional & Integrative Genomics 18, 341-353.
  48. Li, P., Castagnoli, S., and Cheng, L. (2008). Red 'Anjou' pear has a higher photoprotective capacity than green 'Anjou'. Physiologia Plantarum 134, 486-498.
  49. Li, S., Liu, J., Liu, Z., Li, X., Wu, F., and He, Y. (2014). HEAT-INDUCED TAS1 TARGET1 Mediates Thermotolerance via HEAT STRESS TRANSCRIPTION FACTOR A1a-Directed Pathways in Arabidopsis. The Plant Cell 26, 1764-1780.
  50. Li, S., Wang, W., Gao, J., Yin, K., Wang, R., Wang, C., Petersen, M., Mundy, J., and Qiu, J.L. (2016). MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis. The Plant Cell 28, 2866-2883.
  51. Lin, J.S., Lin, C.C., Lin, H.H., Chen, Y.C., and Jeng, S.T. (2012). MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. The New Phytologist 196, 427-440.
  52. Lin, J.S., Kuo, C.C., Yang, I.C., Tsai, W.A., Shen, Y.H., Lin, C.C., Liang, Y.C., Li, Y.C., Kuo, Y.W., King, Y.C., Lai, H.M., and Jeng, S.T. (2018). MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis. Frontiers in Plant Science 9, 68.
  53. Lipova, L., Krchnak, P., Komenda, J., and Ilik, P. (2010). Heat-induced disassembly and degradation of chlorophyll-containing protein complexes in vivo. Biochimica et Biophysica Acta 1797, 63-70.
  54. Loreti, E., Povero, G., Novi, G., Solfanelli, C., Alpi, A., and Perata, P. (2008). Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. The New Phytologist 179, 1004-1016.
  55. Lou, Y., Zhou, H.S., Han, Y., Zeng, Q.Y., Zhu, J., and Yang, Z.N. (2018). Positive regulation of AMS by TDF1 and the formation of a TDF1-AMS complex are required for anther development in Arabidopsis thaliana. The New Phytologist 217, 378-391.
  56. Luo, Q.J., Mittal, A., Jia, F., and Rock, C.D. (2012). An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant molecular Biology 80, 117-129.
  57. Mallory, A.C., and Vaucheret, H. (2006). Functions of microRNAs and related small RNAs in plants. Nature Genetics 38 Suppl, S31-36.
  58. Mangrauthia, S.K., Bhogireddy, S., Agarwal, S., Prasanth, V.V., Voleti, S.R., Neelamraju, S., and Subrahmanyam, D. (2017). Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. Journal of Experimental Botany 68, 2399-2412.
  59. Martin, J., Horwich, A.L., and Hartl, F.U. (1992). Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science (New York, N.Y.) 258, 995-998.
  60. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563-574.
  61. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405-410.
  62. Mu, R.L., Cao, Y.R., Liu, Y.F., Lei, G., Zou, H.F., Liao, Y., Wang, H.W., Zhang, W.K., Ma, B., Du, J.Z., Yuan, M., Zhang, J.S., and Chen, S.Y. (2009). An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Research 19, 1291-1304.
  63. Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Kojima, M., Sakakibara, H., Shinozaki, K., Michael, A.J., Tohge, T., Yamazaki, M., and Saito, K. (2014). Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal : for Cell & Molecular Biology 77, 367-379.
  64. Neill, S.J., Desikan, R., Clarke, A., and Hancock, J.T. (2002). Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiology 128, 13-16.
  65. Oh, J.E., Kim, Y.H., Kim, J.H., Kwon, Y.R., and Lee, H. (2011). Enhanced Level of Anthocyanin Leads to Increased Salt Tolerance in Arabidopsis PAP1-D Plants upon Sucrose Treatment. J Korean Soc Appl Bi 54, 79-88.
  66. Ohi, R., Feoktistova, A., McCann, S., Valentine, V., Look, A.T., Lipsick, J.S., and Gould, K.L. (1998). Myb-related Schizosaccharomyces pombe cdc5p is structurally and functionally conserved in eukaryotes. Molecular and Cellular Biology 18, 4097-4108.
  67. Pan, I.C., Liao, D.C., Wu, F.H., Daniell, H., Singh, N.D., Chang, C., Shih, M.C., Chan, M.T., and Lin, C.S. (2012). Complete chloroplast genome sequence of an orchid model plant candidate: Erycina Pusilla Apply in Tropical Oncidium Breeding. PloS one 7, e34738.
  68. Panchuk, II, Volkov, R.A., and Schoffl, F. (2002). Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology 129, 838-853.
  69. Park, M.Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H., and Poethig, R.S. (2005). Nuclear processing and export of microRNAs in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 102, 3691-3696.
  70. Punwani, J.A., Rabiger, D.S., Lloyd, A., and Drews, G.N. (2008). The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98. The Plant Journal : for Cell & Molecular Biology 55, 406-414.
  71. Qi, T., Huang, H., Song, S., and Xie, D. (2015). Regulation of Jasmonate-Mediated Stamen Development and Seed Production by a bHLH-MYB Complex in Arabidopsis. The Plant Cell 27, 1620-1633.
  72. Qian, J., Chen, J., Liu, Y.F., Yang, L.L., Li, W.P., and Zhang, L.M. (2014). Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression. Genetics & Molecular Research : GMR 13, 1233-1243.
  73. Qu, D., Yan, F., Meng, R., Jiang, X., Yang, H., Gao, Z., Dong, Y., Yang, Y., and Zhao, Z. (2016). Identification of MicroRNAs and Their Targets Associated with Fruit-Bagging and Subsequent Sunlight Re-exposure in the "Granny Smith" Apple Exocarp Using High-Throughput Sequencing. Frontiers in Plant Science 7, 27.
  74. Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D.P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development 20, 3407-3425.
  75. Rastogi, S., Kalra, A., Gupta, V., Khan, F., Lal, R.K., Tripathi, A.K., Parameswaran, S., Gopalakrishnan, C., Ramaswamy, G., and Shasany, A.K. (2015). Unravelling the genome of Holy basil: an "incomparable" "elixir of life" of traditional Indian medicine. BMC Genomics 16, 413.
  76. Ribeiro, E.A., Jr., Cunha, F.Q., Tamashiro, W.M., and Martins, I.S. (1999). Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Letters 445, 283-286.
  77. Rosinski, J.A., and Atchley, W.R. (1998). Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. Journal of Molecular Evolution 46, 74-83.
  78. Ruelland, E., and Zachowski, A. (2010). How plants sense temperature. Environ Exp Bot 69, 225-232.
  79. Saidi, Y., Finka, A., and Goloubinoff, P. (2011). Heat perception and signalling in plants: a tortuous path to thermotolerance. The New Phytologist 190, 556-565.
  80. Shi, M.Z., and Xie, D.Y. (2014). Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Patents on Biotechnology 8, 47-60.
  81. Stief, A., Altmann, S., Hoffmann, K., Pant, B.D., Scheible, W.R., and Baurle, I. (2014). Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors. The Plant Cell 26, 1792-1807.
  82. Stracke, R., Werber, M., and Weisshaar, B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4, 447-456.
  83. Su, Z., Ma, X., Guo, H., Sukiran, N.L., Guo, B., Assmann, S.M., and Ma, H. (2013). Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. The Plant Cell 25, 3785-3807.
  84. Suzuki, N., Sejima, H., Tam, R., Schlauch, K., and Mittler, R. (2011). Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. The Plant Journal : for Cell & Molecular Biology 66, 844-851.
  85. Teng, S., Keurentjes, J., Bentsink, L., Koornneef, M., and Smeekens, S. (2005). Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiology 139, 1840-1852.
  86. Vacca, R.A., de Pinto, M.C., Valenti, D., Passarella, S., Marra, E., and De Gara, L. (2004) . Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiology 134, 1100-1112.
  87. Varshney, R.K., Singh, V.K., Kumar, A., Powell, W., and Sorrells, M.E. (2018). Can genomics deliver climate-change ready crops? Current Opinion in Plant Biology.
  88. Vazquez, F., Legrand, S., and Windels, D. (2010). The biosynthetic pathways and biological scopes of plant small RNAs. Trends in Plant Science 15, 337-345.
  89. Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A.C., Hilbert, J.L., Bartel, D.P., and Crete, P. (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Molecular Cell 16, 69-79.
  90. Wang, L.C., Tsai, M.C., Chang, K.Y., Fan, Y.S., Yeh, C.H., and Wu, S.J. (2011). Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. Journal of Experimental Botany 62, 3609-3620.
  91. Wang, X., Zhuang, L., Shi, Y., and Huang, B. (2017). Up-Regulation of HSFA2c and HSPs by ABA Contributing to Improved Heat Tolerance in Tall Fescue and Arabidopsis. International Journal of Molecular Sciences 18.
  92. Wang, Y., Jiang, L., Chen, J., Tao, L., An, Y., Cai, H., and Guo, C. (2018). Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PloS One 13, e0192382.
  93. Xu, Z., and Rothstein, S.J. (2018). ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in Arabidopsis. Plant Signaling & Behavior 13, e1451708.
  94. Yoshikawa, M., Iki, T., Tsutsui, Y., Miyashita, K., Poethig, R.S., Habu, Y., and Ishikawa, M. (2013). 3' fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3. Proceedings of the National Academy of Sciences of the United States of America 110, 4117-4122.
  95. You, J., and Chan, Z. (2015). ROS Regulation During Abiotic Stress Responses in Crop Plants. Frontiers in Plant Science 6, 1092.
  96. Zhang, Y., Xu, W., Li, Z., Deng, X.W., Wu, W., and Xue, Y. (2008). F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiology 148, 2121-2133.