Title

連續離子沉積法製備AgBiS2量子點的合成與特性及敏化太陽能電池應用

Translated Titles

Synthesis and Characterization of AgBiS2 Quantum Dots by the Successive Ionic Layer Adsorption and Reaction method for application for sensitized solar cell

DOI

10.6845/NCHU.2013.00803

Authors

黃本吉

Key Words

敏化太陽電池 ; 銀铋硫 ; 連續離子沉積 ; 量子點 ; sensitized solar cell ; AgBiS2 ; SILAR ; quantum dot

PublicationName

中興大學物理學系所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

李明威

Content Language

繁體中文

Chinese Abstract

本研究以半導體材料AgBiS2作為染料太陽能電池中的染料吸光劑。因此採用半導體量子點取代染料吸光劑是本研究的重點。本研究使用連續離子沉積反應法合成Ag2S與Bi2S3量子點到TiO2工作區內,再進行退火100℃使其形成AgBiS2量子點,形成太陽能電池的光電極再進行組裝成為太陽能電池。本研究也以X-ray繞射、穿透式電子顯微鏡與吸收光譜來探討AgBiS2量子點的晶格結構與光學特性。並對AgBiS2量子點太陽能電池進行外部量子效率量測其效率。本實驗使用TiO2緻密層、多硫電解液、Au為對電極達到轉換率0.529%、短路電流密度7.61 mA、開路電壓0.18V、填充因子 38.6%。外部量子效率量測可在600nm得到最大轉換效率30%。

English Abstract

AgBiS2 quantum dots were produced using successive ionic layer adsorption and reaction (SILAR) of Bi(NO3)3, Ag(NO3) and Na2S. The quantum dots were synthesized on a nanoporous TiO2 electrode. To improve efficiency, passivation treatments including a TiO2 under layer and additional treatments including annealing and an Au counter-electrode were used. The crystallinity and morphology were characterized by X-ray diffraction and transmission electron microscopy. The optical properties of the AgBiS2 quantum dots were characterized by UV-vis spectroscopy. Polysulfide was used as the electrolyte. The best cell yields a short-circuit current of 7.61 mA/cm2, an open circuit voltage of 0.18V, a fill factor of 38.6% and a power conversion efficiency of 0.529 % at one sun.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
Reference
  1. 9. 陳佳靜, 國立中興大學物理所碩士論文 (2008)
    連結:
  2. 11. 李德龍, 國立中興大學物理所碩士論文 (2007)
    連結:
  3. 13. 何宜融, 國立中興大學物理所碩士論文(2011)
    連結:
  4. 14. S. Gorer, G. Hodes, J. Phys. Chem. 98 (1994) 5338.
    連結:
  5. 15. S. H. Choi, H. Song, I. K. Park, J. H. Yum, S. S. Kim, S. Lee, Y. E. Sung, Journal of Photochemistry and Photobiology A: Chemistry 179, 135–141 48 (2006)
    連結:
  6. 1. H. TSUBOMURA, M. MATSUMURA, Y. NOMURA & T. AMAMIYA. Nature 261, 402 - 403 (03 June 1976)
  7. 2. B. O'REGAN, M. GRA TZEL.Nature 353, 737 - 740 (24 October 1991)
  8. 3. S. Ito, TN Murakami, P. Comte, P. Liska, C. Gratzel, MK. Nazeeruddin, M. Gratzel. Thin Solid Films 516 (2008) 4613–4619
  9. 4. M. Dhanam, R. Balasundaraprabhu, S. Jayakumar, P. Gopalakrishnan, and M. D. Kannan1. phys. stat. sol. (a) 191, No. 1, 149–160 (2002)
  10. 5. T. Minemotoa, Y. Hashimotob, W. Shams-Kolahib, T. Satohb, T. Negamib, H. Takakuraa, Y. Hamakawaa. Solar Energy Materials and Solar Cells Volume 75, Issues 1–2, January 2003, Pages 121–126
  11. 6. B. Pejova, I. Grozdanov,D. Nesheva,A. Petrova. Chem. Mater. 2008, 20, 2551–2565
  12. 7. Reported timeline of solar cell energy conversion efficiencies (from National Renewable Energy Laboratory (USA))
  13. 8. M. Gratzel, Nature 414, 338−344 (2001)
  14. 10. X. F. Gao, H. B. Li, W. T. Sun, Q. Chen, F. Q. Tang and L. M. Peng, J. Phys. Chem. C 113,7531-7535 (2009) .
  15. 12. 林義成, 國立彰化師範大學機電系/顯示所 (2005)
  16. 16. P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, and M. Gratzel, J. Phys. Chem. B 107, 14336-14341 (2003)
  17. 17. JH. Park, KJ. Choi, SW. Kang, YS. Kang,J. Kima, S. Leea.Journal of Power Sources 183 (2008) 812–816
  18. 18. Z. Yang, Chia-Ying Chen, P. Roy and Huan-Tsung Chang, Chemical Communications, 47, 9561-9571(2011)
  19. 19. A. Tubtimtae, K.L. Wu, H.Y. Tung, M.W. Lee, G.J. Wang, Electrochem. Commun., 12 (2010), pp. 1158–1160
  20. 20. C. H Chang and Y.L Lee, Applied Physics Letters 91, 053503 (2007)
Times Cited
  1. 巫慧珍(2014)。以SnO2代替TiO2合成Ag2S量子點之光電極 及在太陽能電池上應用之比較。中興大學物理學系所學位論文。2014。1-65。 
  2. 楊惟智(2013)。三元化合物AgMS2(M=Sb,Bi)量子點之合成及在敏化太陽電池上的應用。中興大學奈米科學研究所學位論文。2013。1-75。