Title

探討二氧化矽粒子之親疏水性在疏水基板上之自組裝研究

Translated Titles

Self-Assembly of Silica Particles with Different Hydrophobicities on Hydrophobic Substrate

DOI

10.6845/NCHU.2013.00857

Authors

吳易真

Key Words

二氧化矽 ; 矽烷偶合劑 ; 核殼結構 ; 親水性 ; 疏水性 ; 染料吸附 ; Silica ; Silane ; Core-Shell structure ; Hydrophilic ; Hydrophobic ; Dye adsorption

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

曾文甲

Content Language

繁體中文

Chinese Abstract

本研究透過溶膠凝膠法合成親水表面的二氧化矽粒子,由動態光散射儀分析,異丙醇所合成的二氧化矽粒子尺寸為437±46 nm,使用與矽酸四乙酯 (Tetraethylorthosillicate, TEOS)結構相似的矽烷偶合劑修飾親水二氧化矽表面,例如選用3-氨基丙三乙氧基矽烷 (3-aminopropyltriethoxysilane, APTES)與苯基三乙氧基矽烷 (Phenyltriethoxysilane, PhTES),經過表面修飾後的二氧化矽,從界面電位分析儀分析二氧化矽表面等電位點,親水表面的二氧化矽為pH=2.8、以APTES修飾過的二氧化矽為pH=8.7、以PhTES修飾過的二氧化矽為pH=3.8,其結果證明二氧化矽表面已被矽烷偶合劑修飾,使用不同矽烷偶合劑修飾的二氧化矽,其飽和修飾濃度不同,APTES修飾的二氧化矽飽和濃度為39 mM,而PhTES的修飾量為98 mM才達到飽和值,由於以APTES修飾過的二氧化矽飽和值時的接觸角為30o,以PhTES修飾過的二氧化矽飽和值時的接觸角為110o,吾人將以PhTES修飾過的二氧化矽與未修飾過的二氧化矽各自吸附螢光染劑Rhodamine B,未修飾過的二氧化矽利用靜電吸引力吸附染劑,其吸附性較差,在螢光顯微鏡下強度比PhTES修飾過的二氧化矽弱,PhTES修飾過的二氧化矽主要利用PhTES上的苯環基去吸附螢光染劑上的疏水官能基,因此能吸附較多的染劑;將吸附上螢光染劑的二氧化矽分散於去離子水中,將此水溶液滴在疏水基板上,控制環境溫度65oC與濕度50 %,乾燥後,由形貌觀察,親水表面的二氧化矽與PhTES修飾過的二氧化矽胚體受到重力及咖啡圈效應(Coffee ring effect)影響,使兩種粒子堆積的位置不同。混合親水表面的二氧化矽與PhTES修飾過疏水表面的二氧化矽於水溶液,環境溫度65 oC與濕度50 %時,乾燥後的胚體以共軛焦顯微鏡(Laser scanning confocal microscope)觀察,分析胚體之螢光影像,胚體中間之螢光訊號比胚體周圍強,因為PhTES修飾過疏水表面的二氧化矽受到重力影響沉降,而親水表面的二氧化矽受到咖啡圈效應影響,往胚體周圍堆積,使胚體周圍的螢光強度減低;由胚體切面分析其螢光訊號得知,大部份PhTES修飾過疏水表面的二氧化矽會與表面親水的二氧化矽混合沉降在底部,不過在胚體的邊緣有些許螢光訊息,推測是部份未沉降表面疏水的二氧化矽,會在移動至液氣界面上,於乾燥後,PhTES修飾過疏水的二氧化矽在表面形成一殼層。

English Abstract

Hydrophilic monodisperse silica (SiO2) particles have been prepared by sol-gel method. From dynamic light-scattering measurement, an average particle size of 437±46 nm is found. 3-aminopropyltriethoxysilane (APTES) and phenyltriethoxy silane (PhTES), which have the same structure of tetraethylorthosillicate (TEOS), have been used to modify the SiO2 surface. From zeta potential and Raman spectroscopy, amino or phenyl groups have been grafted on the hydrophilic particles. Contact angle of water on the APTES modified SiO2 is just 30o. On the other hand, the PhTES modified SiO2 present a contact angle of 110o, and are then used as the hydrophobic SiO2 in this study. When mixing the hydrophilic SiO2 with Rhodamine B dye, the dye is weakly adsorbed by electrostatic forces. In contrast, the hydrophobic SiO2 can adsorb the dye strongly by the phenyl group. Confocal laser scanning microscopy has been used to compare the hydrophilic and hydrophobic SiO2 particles from detection of the dye signals. The SiO2 particles have been dispersed in de-ionized water and dropped onto hydrophobic flat substrates. The droplets are dried at controlled temperature, humidity and particle content. Shape of the dried droplets depends on the surface property, humidity and particle content. The hydrophilic and hydrophobic SiO2 particles have been mixed in proportions and dropped onto the hydrophobic substrates. Most of the hydrophobic SiO2 particles sediment faster than that of the hydrophilic particles.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [2] K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet, and S. Acgarya, “Challenges and Breakthroughs in Recent Research on Self-Assembly”, Sci. Technol. Adv. Mater., 9, 104-109 (2008).
    連結:
  2. [4] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, and D.A Weitz , “Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles”, Science, 298, 1006-1009 (2002).
    連結:
  3. [5] L. Y. Chu, A. S. Utada, R. K. Shah, J. W. Kim, and D. A Weitz, “Controllable Monodisperse Multiple Emulsion”, Angew. Chem. Int. Ed., 46, 8970-8974 (2007).
    連結:
  4. [6] R. Xu, W. Pang and Q. Huo, “Modern Inorganic Synthetic Chemistry”, Elsevier, 63-95, Amsterdam (2011).
    連結:
  5. [7] G. Shi, Y. Xu, K. Sheng, and Chun Li, “Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process”, ACS Nano, 4, 4324-4330 (2010).
    連結:
  6. [8] W. S. Hummers, and R. E. Offeman, “Preparation of Graphitic Oxide”, J. Am. Chem. Soc., 4, 1339-1339 (1958).
    連結:
  7. [9] M. Lin, Z. Y. Fu, H. R. Tan, J. P. Y. Tan, S. C. Ng, and E. Teo, “Hydrothermal Synthesis of CeO2 Nanocrystals: Ostwald Ripening or Oriented Attachment ?”, Cryst. Growth Des.,12, 3296-3303 (2012).
    連結:
  8. [10] D. Sen, S. Mazumder, J. S. Melo, A. Khan, S. Bhattyacharya, and S. F. D’Souza, “Evaporation Driven Self-Assembly of a Colloidal Dispersion during Spray Drying: Volume Fraction Dependent Morphological Transition”, Langmuir, 25, 6690-6695 (2009).
    連結:
  9. [11] M. M. Bellah, S. M. Christensen, and S. M. Iqbal, “Nanostructures for Medical Diagnostics”, J. Nanomater., 2012, 1-25 (2012).
    連結:
  10. [12] A. Hozumi, Y. Yokogawa, T. Kameyama, H. Sugimura, K. Hayashi, H. Shirayama, and O. Takai, “Amino-Terminated Self-Assembled Monolayer on a SiO2 Surface Formed by Chemical Vapor Deposition”, J. Vac. Sci. Tech., 19, 1812-1818 (2001).
    連結:
  11. [13] J. Bravo, L. Zhai, Z. Wu, R. Cohen, and M. F. Rubner, “Transparent Superhydrophobic Films Based on Silica Nanoparticles”, Langmuir,23, 7293-7298 (2007).
    連結:
  12. [14] V. Rastogi, A. A. Garcı’a, M. Marquez, O. D. Velev, “Anisotropic Particle Synthesis Inside Droplet Templates on Superhydrophobic Surfaces”, Macromol. Rapid Commun.,31, 190-195 (2010).
    連結:
  13. [15] V. Rastogi, S. Melle, O. G. Caldero, A. A. Garcı, M. Marquez, and O. D. Velev, “Synthesis of Light-Diffracting Assemblies from Microspheres and Nanoparticles in Droplets on a Superhydrophobic Surface”, Adv. Mater., 20, 4263-4268 (2008).
    連結:
  14. [16] J. Park, J. Moon, H. Shin, D. Wang, M. Park, “Direct-Write Dabrication of Colloidal Photonic Crystal Microarrays by Ink-Jet Printing”, J. Colloid Interface Sci., 298, 713-719 (2006).
    連結:
  15. [19] J. Thomson, “On Certain Curious Motions Observable on The Surfaces of Wine and Other Alcoholic Liquours”,Phil. Mag., 10, 330-333 (1855).
    連結:
  16. [21] P. J. Yunker, T. Still1, M. A. Lohr, and A. G. Yodh, “Suppression of the Coffee-Ring Effect by Shape-Dependent Capillary Interactions”, Nature, 476, 308-311 (2011).
    連結:
  17. [22] C. Moraila-Martınez, M. A. Cabrerizo-Vılchez, and M. A. Rodrıguez- Valverde, “The Role of The Electrostatic Double Layer Interactions in the Formation of Nanoparticle Ring-Like Deposits at Driven Receding Contact Lines”, Soft Matter, 9, 1664-1673 (2013).
    連結:
  18. [23] T. S. Wong, T. H. Chen, X. y. Shen, and C. M. Ho, “Nanochromatography Driven by the Coffee Ring Effect”, Anal. Chem., 83, 1871-1873 (2011).
    連結:
  19. [24] J. Monteux, and F. Lequeux, “Packing and Sorting Colloids at the Contact Line of a Drying Drop”, Langmuir, 27, 2917-2922 (2011).
    連結:
  20. [25] J. S. Jenkins, M. C. Flickinger, O. D. Velev, “Deposition of Composite Coatings from Particle–Particle and Particle–Yeast Blends by Convective-Sedimentation Assembly”, J. Colloid Interface Sci., 380, 192-200 (2012).
    連結:
  21. [26] C. G. Serrano, J. J. McDermott, and D. Velegol, “Sediments of Soft Spheres Arranged by Effective Density”, Nature Mater.,10, 716-721 (2011)..
    連結:
  22. [27] M. Essalhi, M. Khayet, “Surface Segregation of Fluorinated Modifying Macromolecule for Hydrophobic/Hydrophilic Membrane Preparation and Application in Air Gap and Direct Contact Membrane Distillation”, J. Member. Sci., 417, 163-173 (2012).
    連結:
  23. [28] S. Reculusa, P. Masse, and S. Ravaine, “Three-Dimensional Colloidal Crystals with a Well-Defined Architecture”, J. Colloid Interface Sci., 279, 471-478 (2004).
    連結:
  24. [29] J. C. H. Wong, E. Tervoort, S. Busato, L. J. Gauckler, and P. Ermanni, “Controlling Phase Distributions in Macroporous Composite Materials through Particle-Stabilized Foams”, Langmuir, 27, 3254-3260 (2011).
    連結:
  25. [30] L. Chen, and J. R. G. Evans, “Drying of Colloidal Droplets on Superhydrophobic Surface”, J. Colloid Interface Sci., 351, 283-287 (2010).
    連結:
  26. [31] W. Stober, and A. Fink, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range”, J. Colloid Interface Sci., 26, 62-69 (1968).
    連結:
  27. [32] Z. Wua, H. Xiangc, T. Kima, M. S. Chund, and K. t. Lee, “Surface Properties of Submicrometer Silica Spheres Modified with Aminopropyltriethoxysilane and Phenyltriethoxysilane”, J. Colloid Interface Sci., 304, 119-124 (2006).
    連結:
  28. [33] R. D. Badley, W. T. Ford, F. J. McEnroe, and R. A. Assinks, “Surface Modification of Colloidal Silica”, Langmuir, 6, 792-801 (1990).
    連結:
  29. [34] T. Jesionowski, and A. Krysztafkiewicz, “Influence of Silane Coupling Agents on Surface Properties of Precipitated Silicas”, Appl. Surf. Sci., 172, 18-32 (2001).
    連結:
  30. [35] J. W. Goodwin, R. S. Harbron, and P. A. Reynolds, “Functionalization of Colloidal Silica and Silica Surfaces via Silylation Reactions”, Colloid Polym. Sci., 168, 766-777 (1990).
    連結:
  31. [36] F. G. Bordwell, “Equilibrium Acidities in Dimethyl Sulfoxide Solution ”, Acc. Chem. Res., 21, 456-463 (1988).
    連結:
  32. [37] Y. S. Li, Y. Wang, S. Ceesay, “Vibrational spectra of phenyltriethoxysilane, phenyltrimethoxysilane and their sol–gels”, Spect. Acta Part A, 71, 1819-1824 (2009).
    連結:
  33. [39] R. P. Bagwe, L. R. Hilliard, and W. Tan, “Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding”, Langmuir, 22, 4357-4362 (2006).
    連結:
  34. [40] H. S. Jung, D. S. Moon, and J. K. Lee, “Quantitative Analysis and Efficient Surface Modification of Silica Nanoparticles”, J. Nanomater., 22, 4357-4362 (2006).
    連結:
  35. [41] J. Y. Kim, P. Seidler, L. S. Wan, and C. Fil, “Formation, Structure, and Reactivity of Amino-Terminated Organic Films on Silicon Substrates”, J. Colloid Interface Sci., 329, 114-119 (2009).
    連結:
  36. [42] D. M. Kuncicky, and O. D. Velev, “Surface-Guided Templating of Particle Assemblies Inside Drying Sessile Droplets”, Langmuir, 24, 1371-1380 (2008).
    連結:
  37. [43] H. Hu, and R. G. Larson, “Marangoni Effect Reverses Coffee-Ring Depositions”, Langmuir, 110, 7090-7094 (2006).
    連結:
  38. [1] G. L. Timp., “Springer Handbook of Nanotechnology”, Springer-Verlag, 1-4, New York (2007).
  39. [3] P. Sherman, “Emulsion Science”, Academic Press, 2-13, London (1968).
  40. [17] K. L. Mittal, “Contact Angle, Wettability and Adhesion”, Leiden, 3-14, Boston (2006).
  41. [18] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary Flow as the Cause of Ring Stains From Dried Liquid Drops”, Science, 289, 872-829 (1997).
  42. [20] M. Majumder, C. S. Rendall, J. A. Eukel, J. Y. L. Wang, N. Behabtu, C. L. Pint, T. Y. Liu, A. W. Orbaek, F. Mirri, J. Nam, A. R. Barron, R. H. Hauge, H. K. Schmidt, and M. Pasquali, “Overcoming the “Coffee-Stain” Effect by Compositional Marangoni- Flow-Assisted Drop-Drying”, J. Phys. Chem. B, 116, 6536-6542 (2012).
  43. [38] L. G. Wade, “Organic Chemsitry”, Prentice Hall/Pearson Education, 225-235, New Jersey (2003).