Title

三鎳化鐵奈米線陣列之鐵磁共振特性

Translated Titles

Ferromagnetic Resonance Properties of Ni3Fe Nanowire Arrays

DOI

10.6845/NCHU.2011.00995

Authors

何育竹

Key Words

鐵磁共振 ; 奈米線陣列 ; Ferromagnetic Resonance ; Nanowire Arrays

PublicationName

中興大學物理學系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

孫允武

Content Language

繁體中文

Chinese Abstract

本篇論文是利用反射式微波測量三鎳化鐵奈米線陣列之鐵磁共振特性。我們利用電沉積法將三鎳化鐵分別成長於多孔氧化鋁膜以及多孔商用膜之中來製作奈米線陣列。其中使用多孔氧化鋁膜製作出之三種不同密度的三鎳化鐵奈米線陣列密度(P),分別為28 %、45 %、100 %,奈米線直徑與長度分別是50 nm及3μm;而成長於多孔商用膜中之樣品,其密度為6 %、奈米線直徑220 nm、長度4μm。我們利用1 mm寬的銅箔來固定樣品在SMA接頭的介電質部分,且使SMA接頭前端形成短路迴路;接著運用向量網路分析儀( VNA )產生1到13 GHz的微波訊號,在+4.5 kOe ~ -4.5 kOe的外加磁場範圍下偵測其反射訊號的振幅變化量;並且探討奈米線成長方向與外加磁場之角度變化( 00 ~ 900 )的關係。 量測結果發現鐵磁共振特性會與微波頻率及磁性奈米線陣列密度有關,當微波頻率持續增加時,鐵磁共振的磁場值也會逐漸增加。當奈米線成長方向與外加磁場之夾角逐漸增加時,鐵磁共振的磁場值會跟著逐漸減小,而奈米線陣列密度較小的樣品,在改變外加磁場入射角度時,其共振磁場值會有較大的變化。

English Abstract

In this study, we report the ferromagnetic resonace (FMR) of Ni3Fe nanowire array by using the microwave (MW) reflectometry. The nanowire array with the porosities of 28 %、45 %、100 % and 6 % was grown by electrodeposition into the pores of anodic aluminum oxide membranes and commercial film, respectively. For nanowires grown on the anodic aluminum oxide membranes, their diameter is about 50 nm and the length is 3 μm. For those grown on the commercial film, the diameter is 200 nm and the length is 4 μm. The sample is placed on the dielectric part of a SMA connector and fixed by a 1-mm-wide copper ribbon which leads a short-loop detection. We applied the MW signal with the frequency ranging from 1 GHz to 13 GHz and detected magnitudes of the reflection signal at the magnetic field from 4.5 kOe to -4.5 kOe by using a vector network analyzer. The angle between the growth direction of nanowires and the magnetic field is from 0° to 90°. From the result, we observed that the FMR depends on the frequency-field values. The magnetic field where FMR is existed increases as the MW frequency increases. When the angle between magnetic field and the growing direction of nanowires increases, the value of the magnetic field related to the FMR decreases., As the angle is changed, the lager variety of the resonance magnetic field of the sample is, the smaller porosity of the sample is.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
Reference
  1. [2] C. Kittel, "Introduction to Solid State Physics", Eighth Edition, John Wiley & Sons, Inc. (2005).
    連結:
  2. [7] Sun, S.; Murray, C. B. J. Appl. Phys., 85, 4325 (1999)
    連結:
  3. [12] B. D. Cullity, C. D. Graham, " Introduction to Magnetic Materials, 2d edition "
    連結:
  4. [13] A. Encinas-Oropesa, M. Demand, and L. Piraux, Phys. Rev. B 63, 104415
    連結:
  5. [17] Victor Vega, Victor M. Prida, Jose Angel Garcıa, and Manuel Vazquez, Phys. Status Solidi A 208, No. 3, 553–558 (2011)
    連結:
  6. [22] 辛嘉芬,"磁性奈米線製備及其特性分析",碩士論文,國立台灣大學理學院化學系 (2007)
    連結:
  7. [1] Luc Thomas, Rai Moriya, Charles Rettner, Stuart S. P. Parkin , Science Vol. 330, No. 6012 pp. 1810-1813 (2010)
  8. [3] R. C. O'Handley, "Modern magnetic Materials", A Wisley Interscience Publication company (2000).
  9. [4] 鄭振東,"實用磁性材料學",全華科技出版社(1999)
  10. [5] Park, S. J.; Kim, S.; Lee, S.; Khim, Z. G.; Char, K.; Hyeon, T.; J. Am. Chem. Soc. 122, 8581 (2000)
  11. [6] Puntes, A. F.; Krishnan, K. M.; Alivisatos, A. P. Science, 291, 2115 (2001)
  12. [8] 宛德福、馬隆興,"磁性物理學"電子工業出版社 (1999)
  13. [9] 金重勳,"磁性技術手冊" 磁性技術協會:竹東,民91
  14. [10] 張慶瑞,"物理會刊" 11,民78
  15. [11] S. Chikazumi, "Physics of Freeomagnetism" , Oxford, New York (1997).
  16. [14] M.Demand , A.Encinas-Oropesa , S.Kenane , U.Ebels, I.Huynen, L.Piraux, J. Magn. Magn. Mater, Vol.249, pp. 228-233 (2002)
  17. [15] U. Ebels, J. -L. Duvail, P. E. Wigen, L. Piraux, L. D. Buda, K. Ounadjela, Phys. Rev. B 64, 144421
  18. [16] A. Encinas-Oropesa, M. Demand, and L. Piraux, J. Appl. Phys. 89, 6704
  19. [18] M. Vazquez_, M. Hernandez-Velez, A. Asenjo, D. Navas, K. Pirota, V. Prida1, O. Sanchez, J.L. Baldonedo, Physica B 384 36–40 (2006)
  20. [19] Louis-Philippe Carignan, Christian Lacroix, Alexandre Ouimet, Mariana Ciureanu, Arthur Yelon, and David Ménard, J. Appl. Phys. 102, 023905
  21. [20] 袁淑娟、周仕明、鹿牧,"物理學報" 第55卷第2期 (2006)
  22. [21] 苏彩娜、安茂忠、杨培霞、张新梅,"中國科技論文在線"