Title

應力誘發氧化物奈米晶體自發性成長機制之研究

Translated Titles

Stress-induced Spontaneous Growth Mechanism of Oxide Nanocrystals

DOI

10.6845/NCHU.2013.01008

Authors

古敏佳

Key Words

應力 ; 奈米晶體 ; 自發性 ; stress ; nanocrystal ; spontaneous

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

張守一

Content Language

繁體中文

Chinese Abstract

一維金屬氧化物奈米結構多利用氣相沉積法及水溶液法成長,以氣相沉積法有製程複雜、溫度高、成本昂貴等缺點,而水溶液法雖可在較低溫及低成本下得到大量奈米結構,但不論是氣相製程或水溶液法皆須使用反應前驅物,且無法在一般環境下之特定位置成長一維氧化物奈米結構,即使有類似應力誘發方式稱之為Mechanochemistry仍先準備反應前驅物,故本實驗室在過去提出 BHR 機制 (Bond breaking – Hydrolysis – Reconstruction),成功在氧化鋅及氧化鈦薄膜上自發性成長一維金屬氧化物奈米晶體。因此本研究將常見之氧化物 (ZnO、TiO、ZrO、SiO) 與大自然界中的花崗岩 (Granite) 施加應力並結合水溶液法成長之奈米晶體,硫酸鈣 (CaSO4) 僅在水氣環境下 得到之奈米晶體皆進行尺寸量測,並發現氧化物及花崗岩屬於自發性成長行為,而硫酸鈣奈米晶體之反應屬於非自發性成長行為,但其與水氣的反應非常快速,可合理懷疑學界提出水晶是以水溶液沉積的方式而成長。另外,結構學探討水氣吸附氧化物之表面位置及穩定之結構;實驗搭配熱力學探討氧化物斷鍵並發生水解之難易程度;化學動力學探討氧化物奈米晶體之成長速率,因此可瞭解應力誘發氧化物奈米晶體自發性之成長機制。

English Abstract

One-dimensional nanostructures growth of metal oxides much of the use for vapor deposition and aqueous method, but those of methods have a few disadvantages. For example of vapor deposition, there are some disadvantages such as complex process, high synthesis temperature and high cost, however, aqueous method is able to obtain a world of nanostructures at low temperature and cost. Both them have to prepare precursors first. Neither of these two methods grows nanostructures on specific location in an ambient temperature. Even if mechanochemistry is similar stress-induced method, it still preparing precursors. Our previous works reported that one-dimensional nanocrystals spontaneously grew from ZnO and TiO2 film for BHR mechanism. Therefore in this study, a method that combines stress-induced and aqueous growth has been proposed for growth of one-dimensional nanocrystals on familiar oxide materials and natural granite except calcium sulfate. The results showed that oxides and granite nanocrystals were spontaneous growth; calcium sulfate nanocrystals were just the opposite. Granite and calcium sulfate would obtain nanocrysatls so that could reasonably doubt whether the academic circle referred to growth of crystals by solution deposition. In addition, this study utilized not only structural theory to investigate the position and structure of the water absorbed on surface of the oxides but thermodynamics to realize the phenomena of bond broken and hydrolysis of oxides; finally, chemical kinetics was brought out the growth rate of oxide nanocrystals for understanding stress-induced spontaneous growth mechanism of oxide nanocrystals.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [1]. M. W. Barsoum, E. N. Hoffman, R. D. Doherty, S. Gupta, and A.
    連結:
  2. Zavaliangos, “Driving force and mechanism for spontaneous metal whisker formation”, Phys. Rev. Lett., 93 (2004) 206104-1~4.
    連結:
  3. whiskers on an electrodeposited Sn thin film under three-point bending”, Mater Lett., 63(2009) 1517-1520.
    連結:
  4. W. Lee, “Watching bismuth nanowires grow”, Appl. Phys. Lett., 98 (2011) 043102-1~3.
    連結:
  5. [5]. S.Y. Chang, N. H. Yang, Y. C. Huang, S. J. Lin, T. Z. Kattamis,
    連結:
  6. nanostructures from films in ambient atmosphere at room temperature : ZnO and TiO2”, J. Mater. Chem., 21 (2011) 4264 -4271.
    連結:
  7. [6]. M. F. Ashby, P. J. Ferreira, and D. L. Schodek, “Nanomaterials,
    連結:
  8. [7]. N. S. Ramgir, Y. Yang, and M. Zacharias, “Nanowire-based
    連結:
  9. A. Maisonnat, and M. L. Kahn, “Self-assembly of ZnO nanoparticles-an NMR spectroscopic study”, Eur. J. Inorg. Chem., 16 (2012) 2691-2699.
    連結:
  10. Hong, and J. G. Lu, “ZnO nanowires synthesized by vapor trapping CVD method”, Chem. Mater., 16 (2004) 5133-5137.
    連結:
  11. Wortman, R. L. Snyder, and Z. L. Wang, “Magnetism in dopant-free ZnO nanoplates”, Nano Lett., 12 (2012) 576-581.
    連結:
  12. [11]. C. Liu, K. S. Kim, J. Baek, Y. Choc, S. Han, S. W. Kim, N. K.
    連結:
  13. Min, Y. Choi, J. U. Kim, and C. J. Lee, “Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles”, Carbon, 47 (2009) 1158-1164.
    連結:
  14. [12]. Y. Li, X. Y. Yang, Y. Feng, Z. Y. Yuan, and B. L. Su,
    連結:
  15. “One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations,properties and applications”, Crit. Rev. Solid State Mat. Sci., 37 (2012) 1-74.
    連結:
  16. Trampert, and O. Brandt, “Spontaneous nucleation and growth of GaN nanowires: the fundamental role of crystal polarity”, Nano Lett., 12 (2012) 6119-6125.
    連結:
  17. solar cells based on one-dimensional nanostructure”, Nanoscale, 4 (2012) 2783-2796.
    連結:
  18. stiffening in ZnO nanobelts”, Nano Lett., 11 (2011) 2845-2848.
    連結:
  19. Dasgupta, “High-speed, low-voltage, and environmentally stable operation of electrochemically gated zinc oxide nanowire field-effect transistors”, Adv. Funct. Mater., 23 (2013) 1750-1758.
    連結:
  20. nanofilms: new opportunities for plastic electronics”, Angew. Chem. Int. Ed., 48 (2009) 2457-2459.
    連結:
  21. K. Schenck, “Characterization of metal oxide nanofilm morphologies and composition by terahertz transmission spectroscopy”, Opt. Lett., 34 (2009) 1360-1362.
    連結:
  22. [19]. S. Bazargan, N. F. Heinig, D. Pradhan, and K. T. Leung,
    連結:
  23. “Controlled growth of monodisperse nanocrystallites in tin (IV) oxide nanofilms”, Cryst. Growth Des., 11 (2011) 247-255.
    連結:
  24. [21]. Z. L .Wang, X. Y. Kong, Y. Ding, P. X. Gao, W. L. Hughes, R. S. Yang, and Y. Zhang, “Semiconducting and piexoelectric oxide nanostructures induced by polar surfaces”, Adv. Funct. Mater., 14 (2004) 943-956.
    連結:
  25. [22]. C.Woll, “The chemistry and physics of zinc oxide surface”, Prog. Surf. Sci., 82 (2007) 55-120.
    連結:
  26. [23]. S. L. Ji, and C. H. Ye, “Synthesis, growth mechanism, and applications of zinc oxide nanomaterials”, J. Mater. Sci. Technol., 24 (2008) 457-472.
    連結:
  27. [24]. M. Kidwai, and N. K. Mishra, “Green chemistry-environmentally benign approaches”, InTech, Croatia.
    連結:
  28. [25]. R. S. Yang, Y. Qin, L. M. Dai, and Z. L. Wang, “Power generation with laterally packaged piezoelectric fine wires”, Nat. Nanotechnol., 4 (2009) 34-39.
    連結:
  29. [26]. S. K. Gupta, A. Joshi, and M. Kaur, “Development of gas sensors using ZnO nanostructures”, J. Chem. Sci., 122 (2010) 57-62.
    連結:
  30. [27]. S. Xu, and Z. L. Wang, “One-dimensional ZnO nanostructures: solution growth and functional properties”, Nano Res., 4 (2011) 1013-1098.
    連結:
  31. [28]. Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yua, “Morphological effects on the field emission of ZnO nanorod arrays”, Appl. Phys. Lett., 86 (2005) 203115-1~3.
    連結:
  32. [29]. F. Xu, K. Yu, G. D. Li, Q. Li, and Z. Q. Zhu1, “Synthesis and field emission of four kinds of ZnO nanostructures: nanosleeve-fishes, radial nanowire arrays, nanocombs and nanoflowers”, Nanotechnology, 17 (2006) 2855-2859.
    連結:
  33. [30]. C. H. Ye, Y. Bando, X. S. Fang, G. Z. Shen, and D. Golberg, “Enhanced field emission performance of ZnO nanorods by two alternative approaches”, J. Phys. Chem. C., 111 (2007) 12673-12676.
    連結:
  34. [31]. E. M. Levin, C. R. Robbins, and H. F. Mcmurdie, “Phase diagrams for ceramists”, The American Ceramic Society, inc., 76 (1975) 4150-4999.
    連結:
  35. [32]. U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Rep., 48 (2003) 53-229.
    連結:
  36. [33]. D. Dambournet, I. Belharouak, and K. Amine, “Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties”, Chem. Mat., 22 (2010) 1173-1179.
    連結:
  37. [34]. X. Chen, and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications” , Chem. Rev., 107 (2007) 2891-2959.
    連結:
  38. [35]. K. Nakataa, and A. Fujishimaa, “TiO2 photocatalysis: design and applications”, J. Photochem. Photobiol. C-Photochem. Rev., 13 (2012) 169-189.
    連結:
  39. [36]. T. Sun, L. S. Liu, Y. Sun, C. L. Tan, F. Yao, X. H. Liang, Y,Wang, Y. H. Yang, X. Y. Hu, and J. Fan, “Synthesis and characterization of TiO2 nanoparticles: applications in research on the interaction of colloidal TiO2 with human serum albumin by fluorescence spectroscopy”, Anal. Sci., 28 (2012) 491-496.
    連結:
  40. [37]. P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, “TiO2 nanotubes and their application in dye-sensitized solar cells”, Nanoscale, 2 (2010) 45-59.
    連結:
  41. [40]. X. X. Xu and X. Wang, “Fine tuning of the sizes and phases of ZrO2 nanocrystals”, Nano Res., 2 (2009) 891-902.
    連結:
  42. [41]. M. W. Finnis, A. T. Paxton, M. Methfessel, and M. van Schilfgaarde, “Crystal structures of zirconia from first principles
    連結:
  43. [42]. K. Sato, H. Abe, and S. Ohara, “Selective growth of monoclinic and tetragonal zirconia nanocrystals”, J. Am. Chem. Soc., 132 (2010) 2538-2539.
    連結:
  44. [44]. S. Ran, L.Winnubst, W. Wiratha, and D. H. A. Blank, “Sintering behavior of 0.8 mol%-CuO-doped 3Y-TZP ceramics”, J. Am. Ceram. Soc., 89 (2006) 151-155.
    連結:
  45. J. M. D. Fernandez, A. Machado, R. Chou, and J. Riba, “CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants”, Wear, 265 (2008) 422-428.
    連結:
  46. [46]. C. Piconi, and G. Maccauro, “Zirconia as a ceramic biomaterial”, Biomaterials, 20 (1999) 2-25.
    連結:
  47. [50]. B. J. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, “Silica-metal core-shell nanostructures”, Adv. Colloid Interface Sci., 170 (2012) 28-47.
    連結:
  48. [51]. A. Carretero-Genevrier, M. Gich, L. Picas, J. Gazquez, G. L. Drisko, C. Boissiere, D. Grosso, J. Rodriguez-Carvajal, and C. Sanchez, “Soft-chemistry-based routes to epitaxial α-quartz thin films with tunable textures”, Science, 340 (2013) 827-831.
    連結:
  49. phase transition and elastic anomaly”, Phys. stat. sol. (b)., 242 (2005) 607-620.
    連結:
  50. [53]. S. X. Ren, Y. P. Guo, L. Zhao, X. K. Ma, Y. P. Xiao, Y. Yu, Y. Liu, X. Zhao, and Z. C. Wang. “The preparation of tridymite crystal by chemical processing”, Phase Transitions, 81 (2008) 395-402.
    連結:
  51. [54]. N. Shi, and R. Ramprasad, “Dielectric properties of ultrathin SiO2 slabs”, Appl. Phys. Lett., 87 (2005) 262102-1~3.
    連結:
  52. [56]. A. Alderson, and K. E. Evans, “Deformation mechanisms leading to auxetic behaviour in the α-cristobalite and α-quartz structures of both silica and germania”, J. Phys.: Condens. Matter., 21 (2009) 025401-1~12.
    連結:
  53. [57]. B. Verdes, I. Chira, M. Virgolici, and V. Moise, “Thermal stability of fayalite system formation at the interface between steel and mould”, U. P. B. Sci. Bull. Series B, 74 (2012) 257-268.
    連結:
  54. [58]. X. F. Yang, H. Tang, K. S. Cao, H. J. Song, W. C. Sheng, and Q. O. Wu, “Templated-assisted one-dimensional silica nanotubes: synthesis and applications”, J. Mater. Chem., 21 (2011) 6122-6135.
    連結:
  55. [59]. M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits”, J. Appl. Phys., 90 (2001) 2057-2121.
    連結:
  56. [60]. S. P. Ju, K. H. Lin, and K. F. Lin, “Electronic and structural properties of ultrathin SiO2 nanowires”, J. Phys. Chem. C., 116 (2012) 3918-3927.
    連結:
  57. [61]. Y. B. Zhou, B. He, Y. Yang, F. Wang, W. M. Liu, P. F. Wang, W. J. Zhang, J. Bello, and S. T. Lee, “Construct hierarchical superhydrophobic silicon surfaces by chemical etching”, J. Nanosci. Nanotechnol.,11 (2011) 2292-2297.
    連結:
  58. [62]. P. Comodi, A. Kurnosov, S. Nazzareni, and L. Dubrovinsky, “The dehydration process of gypsum under high pressure”, Phys. Chem. Minerals., 39 (2012) 65-71.
    連結:
  59. [63]. H. Shindo, T. Igarashi, W. Karino, A. Seo, M. Yamanobe-Hada, and M. Haga, “Stabilities of crystal faces of anhydrite (CaSO4) compared by AFM observation of facet formation processes in aqueous solutions”, J. Cryst. Growth., 312 (2010) 573-579.
    連結:
  60. [64]. S. Seufert, C. Hesse, F. Goetz-Neunhoeffer, and J. Neubauer, “Discrimination of bassanite and anhydrite III dehydrated from gypsum at different temperatures”, Z. Kristall., 30 (2009) 447-452.
    連結:
  61. [65]. J. E. Kogel, N. C. Trivedi, J. M. Barker, and S. T. Kruknowski, “Industrial minerals and rocks: commodities, markets, and
    連結:
  62. [67]. S. K. Lee, M. K. Lee, and H. Le, “Surfactant-free synthesis of CaSO4 nanorod/nanowire by electrochemical deposition”, J. Electrochem. Soc., 157 (2010) K43-K46.
    連結:
  63. [68]. M. Arikana, and K. Sobolev, “The optimization of a gypsum-based composite material”, Cem. Concr. Res., 32 (2002) 1725-1728.
    連結:
  64. [69]. S. C. Hou and L. Xiang, “Influence of activity of CaSO4⋅2H2O on hydrothermal formation of CaSO4⋅0.5H2O whiskers”, J. Nanomater., 237828 (2013) 1~5.
    連結:
  65. [70]. P. D. Yang, H. Q. Yan, S. MaO, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties”, Adv. Funct. Mater., 12 (2002) 323-331.
    連結:
  66. [71]. A. George, P. Kumari, N. Soin, S.S. Roy, and J. A. Mclaughlin, “Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor deposition”, Mater. Chem. Phys., 123 (2010) 634-638.
    連結:
  67. [72]. J. N. Tiwari, R. N. Tiwari, and K. S. Kim, “Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices”, Prog. Mater Sci., 57 (2012) 724-803.
    連結:
  68. [73]. W. Lee, M. C. Jeong, and J. M. Myoung, “Fabrication and application potential of ZnO nanowires grown on GaAs (002) substrates by metal-organic chemical vapour deposition”, Nanotechnology, 15 (2004) 254-259.
    連結:
  69. [74]. Y. Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami,
    連結:
  70. “Synthesis, characterization, and applications of ZnO nanowires”, J. Nanomater., 624520 (2012) 1-22.
    連結:
  71. batteries”, J. Phys. Chem. B, 110 (2006) 9383-9386.
    連結:
  72. developments in synthesis, characterization, and applications”, Adv. Funct. Mater., 22 (2012) 3326-3370.
    連結:
  73. [77]. Y. P. Du, and G. Xie, “Uniform ZnO nanorods derived from lithium ions as a growth controlling agent in non-aqueous medium”, CrystEngComm., 13 (2011) 437-439.
    連結:
  74. [79]. S.E. Koonce and S.M. Arnold, “Growth of metal whiskers”, J.
    連結:
  75. Appl. Phys. (letters to the editor), 24 (1953) 364-365.
    連結:
  76. [80]. K. N. Tu, “Irreversible process of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions”, Phys. Rev. B, 49 (1994) 2030-2034.
    連結:
  77. [81]. Y. M. Yue, M. G. Chen, Y. Ju and L. Zhang, “Stress-induced growth of well-aligned Cu2O nanowire arrays and their photovoltaic effect”, Scr. Mater., 66 (2012) 81-84.
    連結:
  78. [82]. W. Shim, J. Ham, K. I. Lee, W. Y. Jeung, M. Johnson, and W. Lee, “On-film formation of Bi nanowires with extraordinary electron mobility”, Nano Lett., 9 (2009) 18-22.
    連結:
  79. [83]. F. Q. Yang and Y. Li, “Indentation-induced tin whiskers on electroplated tin coatings”, J. Appl. Phys., 104 (2008) 113512-1~4.
    連結:
  80. [84]. T. Shibutani, “ Effect of grain size on pressure-induced tin whisker formation”, IEEE. T. Electron. Pa. M., 33 (2010) 177-182.
    連結:
  81. [85]. R. Mema, L. Yuan, Q. T. Du, Y. Q. Wang, and G. W. Zhou, “Effect of surface stresses on CuO nanowire growth in the
    連結:
  82. [86]. G. Kaupp, “Mechanochemistry: the varied applications of mechanical bond-breaking”, CrystEngComm., 11 (2009) 388-403.
    連結:
  83. [88]. B. Meyer, H. Rabaa, and D. Marx, “Water adsorption on ZnO(10ī0): from single molecules to partially dissociated monolayers”, Phys. Chem. Chem. Phys., 8 (2006) 1513-1520.
    連結:
  84. [89]. A. Calzolari, and A. Catellani, “Water adsorption on nonpolar ZnO (10ī0) surface: a microscopic understanding”, J. Phys. Chem. C., 113 (2009) 2896-2902.
    連結:
  85. [90]. C. L. Pang, R. Lindsay, and G. Thornton, “Chemical reactions on rutile TiO2 (110)”, Chem. Soc. Rev., 37 (2008) 2328-2353.
    連結:
  86. [91]. Y. He, W. K. Li, X. Q. Gong, O. Dulub, A. Selloni, and U. Diebold, “Nucleation and growth of 1D water clusters on rutile TiO2 (011)-(2×1)”, J. Phys. Chem. C., 113 (2009) 10329-10332.
    連結:
  87. [92]. S. Wendt, J. Matthiesen, R. Schaub, E. K. Vestergaard, E. Laegsgaard, F. Besenbacher, and B. Hammer, “Formation and splitting of paired hydroxyl groups on reduced TiO2 (110)”, Phys. Rev. Lett., 96 (2006) 066107-1~4.
    連結:
  88. [93]. C. Sun, L. M. Liu, A. Selloni, G. Q. Lu, and S. C. Smith, “Titania-water interactions: a review of theoretical studies”, J. Mater. Chem., 20 (2010) 10319-10334.
    連結:
  89. [94]. D. Raymand, A. C.T. van Duin, W. A. Goddard, K. Hermansson, and D. Spangberg, “Hydroxylation structure and proton transfer reactivity at the zinc oxide-water Interface”, J. Phys. Chem. C, 115 (2011) 8573-8579.
    連結:
  90. [95]. B. Meyer, D. Marx, O. Dulub, U. Diebold, M. Kunat, D. Langenberg, and C. Woll, “Partial dissociation of water leads to stable superstructures on the surface of zinc oxide”, Angew. Chem. Int. Ed., 43 (2004) 6642-6645.
    連結:
  91. Adamski, and Z. Sojka, “Periodic DFT and atomistic thermodynamic modeling of the surface hydration equilibria and morphology of monoclinic ZrO2 nanocrystals”, J. Phys. Chem. C, 115 (2011) 24274-24286.
    連結:
  92. [97]. Z. Y.Zhao, Z. S. Li, and Z. G. Zou, “A theoretical study of water adsorption and decomposition on the low-index stoichiometric anatase TiO2 surfaces”, J. Phys. Chem. C,116 (2012) 7430-7441.
    連結:
  93. [98]. A. S. Barnard, P. Zapol, and L. A. Curtiss, “Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions”, Surf. Sci., 582 (2005) 173-188.
    連結:
  94. [99]. J. Nisar, C. M. Araujo, and R. Ahuja, “Water interaction with native defects on rutile TiO2 nanowire: ab initio calculations”, Appl. Phys. Lett., 98 (2011) 083115-1~3.
    連結:
  95. [100]. C. H. Sun, T. Liao, G. Q. Lu, and S. C. Smith, “The role of atomic vacancy on water dissociation over titanium dioxide nanosheet: a density functional theory study”, J. Phys. Chem. C., 116 (2012) 2477-2482.
    連結:
  96. [101]. Q. Cuan, J. G. Tao, X. Q. Gong, and M. Batzill, “Adsorbate induced restructuring of TiO2 (011)-(2x1) leads to one-dimensional nanocluster formation”, Phys. Rev. Lett.,108 (2012) 106105-1~5.
    連結:
  97. [102]. X. Rozanska, F. Delbecq and P. Sautet, “Reconstruction and stability of β-cristobalite 001, 101, and 111 surfaces during dehydroxylation”, Phys. Chem. Chem. Phys.,12 (2010) 14930-14940.
    連結:
  98. [103]. S. K. Upadhyay, “Chemical kinetics and reaction dynamics, Springer, USA.
    連結:
  99. [104]. R. T. Downs, and M. Hall-Wallace, “The american
    連結:
  100. [105]. B. Zhao, F. Chen, Y. C. Jiao and J. L. Zhang, “Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment”, J. Mater. Chem., 20 (2010) 7990-7997.
    連結:
  101. [106]. S. G. Chen, Y. S. Yin, and D. P. Wang, “Experimental and theoretical investigation on the correlation between aqueous precursors structure and crystalline phases of zirconia”, J. Mol. Struct., 690 (2004) 181-187.
    連結:
  102. [107]. C. Y. Huang, Z. L. Tang, and Z. T. Zhang, “Differences between zirconium hydroxide (Zr(OH)4•nH2O) and hydrous zirconia (ZrO2•nH2O)”, J. Am. Ceram. Soc., 84 (2001) 1637-1638.
    連結:
  103. [108]. J. Sefcik and W. A. Goddard, “Thermochemistry of silicic acid deprotonation: Comparison of gas-phase and solvated DFTcalculations to experiment”, Geochim. Cosmochim. Acta, 65 (2001) 4435-4443.
    連結:
  104. [2]. C. M. Chen, and Y. J. Chen, “Growth orientation of the tin
  105. [3]. J. Ham, W. Shim, D. H. Kim, K. H. Oh, P. W. Voorhees, and
  106. [4]. M. Chen, Y. Yue, and Y. Ju, “Growth of metal and metal oxide
  107. nanowires driven by the stress-induced migration”, J. Appl. Phys., 111 (2012) 104305-1~6.
  108. and C. Y. Liu, “Spontaneous growth of one-dimensional
  109. nanotechnologies and design”, Elsevier, USA.
  110. sensors”, Small, 6 (2010) 1705-1722.
  111. [8]. Y. Coppel, G. Spataro, V. Colliere, B. Chaudret, C. Mingotaud,
  112. [9]. P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J.
  113. [10]. J. I. Hong, J. Choi, S. S. Jang, J. Y. Gu, Y. L. Chang, G.
  114. [13]. S. F. Garrido, X. Kong, T. Gotschke, R. Calarco, L. Geelhaar, A.
  115. [14]. M. Yu, Y. Z. Long, B. Sun, and Z. Fan, “Recent advances in
  116. [15]. Y. C. Yang, G. F, Wang, and X. D. Li, “Water molecule-induced
  117. [16]. B. Nasr , D. Wang , R. Kruk , H. Rosner , H. Hahn , and S.
  118. [17]. H. Hoffmann, “Room-temperature growth of silicon oxide
  119. [18]. E. J. Heilweil, J. E. Maslar, W. A. Kimes, N. D. Bassim, and P.
  120. [20]. C. Jagadish, and S. Pearton, “Zinc oxide bulk, thin films and nanostructures”, Elsevire, UK.
  121. [38]. J. C. Garciaa, L. M. R. Scolfarob, A. T. Lino, V. N. Freire, G. A. Farias, C. C. Silva, H. W. Leite Alves, S. C. P. Rodrigues and E. F. da Silva, “Structural, electronic, and optical properties of ZrO2 from ab initio calculations”, J. Appl. Phys., 100 (2006) 04103-1~9.
  122. [39]. W. H. Zhu, R. S. Wang, G. G. Shu, P. Wu, and H. M. Xiao, “First-principles study of the structure, mechanical properties,
  123. and phase stability of crystalline zirconia under high pressure”, Struct Chem., 23 (2012) 601-611.
  124. and self-consistent tight binding”, Phys. Rev. Lett., 81 (1998) 5149-5152.
  125. [43]. M. H. B. Bernal, and S. D. D. la Torre, “Review phase transitions in zirconium dioxide and related materials for high performance engineering ceramics”, J. Mater. Sci., 37 (2002) 4947-4971.
  126. [45]. A. H. Battez, R. Gonzalez, J. L. Viesca, J. E. Fernandez,
  127. [47]. S. Pilathadka, D. Vahalova, and T. Vosahlo, “The zirconia: a new dental ceramic material. an overview”, Prague Medical Report , 108 (2007) 5-12.
  128. [48]. H. C. Chen, K. J Chen, C. C. Lin, C. H. Wang, H. V. Han, H. H. Tsai, H. T. Kuo, S. H. Chien, M. H. Shih, and H. C. Kuo, “Improvement in uniformity of emission by ZrO2 nano-particles for white LEDs”, Nanotechnology, 23 (2012) 265201-1~5.
  129. [49]. R. A. Lucky, R. H. Sui, J. M. H. Lo, and P. A. Charpentier, “Effect of solvent on the crystal growth of one-dimensional
  130. ZrO2-TiO2 nanostructures”, Cryst. Growth Des., 10 (2010) 1598-1604.
  131. [52]. H. Kimizuka, and H. Kaburaki, “Molecular dynamics study of
  132. the high-temperature elasticity of SiO2 polymorphs: Structural
  133. [55]. A. Largeteau, S. Darracq, and G. Goglio, “Solvothermal synthesis of α-quartz powder doped with germanium”, Z. Naturforsch.(B), 63 (2008) 739-741.
  134. users”, Society for mining, and metallurgy, and exploration, USA.
  135. [66]. A. N. Christensen, M. Olesen, Y. Cerenius, and T. R. Jensen, “Formation and transformation of five different phases in the CaSO4-H2O system: crystal structure of the subhydrate
  136. β-CaSO4 • 0.5H2O and soluble anhydrite CaSO4”, Chem. Mater., 20 (2008) 2124-2132.
  137. [75]. G. C. Li, S. P. Pang, L. Jiang, Z. Y. Guo, and Z. K. Zhang, “Environmentally friendly chemical route to vanadium oxide
  138. single-crystalline nanobelts as a cathode material for lithium-ion
  139. [76]. R. S. Devan, R. A. Patil, J. H. Lin, and Y. R. Ma, “One-dimensional metal-oxide nanostructures: recent
  140. [78]. H. Y. Hunsiker, and L.W. Kenspf, “Growth of whisker on tin-aluminum bearing”, Quart. Trans. SAE., 1 (1947).
  141. thermal oxidation of copper”, Chem. Phys. Lett., 512 (2011) 87-91.
  142. [87]. S.L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, Kenneth D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin,j W. C. Shearouse, J. W. Steed, and D. C. Waddell, “Mechanochemistry: opportunities for new and cleaner synthesis”, Chem. Soc. Rev., 41 (2012) 413-447.
  143. [96]. W. Piskorz, J. Grybos, F. Zasada, S. Cristol, J. F. Paul, A.
  144. mineralogist crystal structure database”, Am. Mineral., 88 (2003) 247-250.
  145. [109]. C. Iuga, R. E. Olea, and A. Vivier-Bunge, “Mechanism and kinetics of the OH• radical reaction with formaldehyde bound to an Si(OH)4 monomer”, J. Mex. Chem. Soc. 51 (2008) 36-46.