Title

量測碳八十四分子嵌入矽基板時之光電、磁以及力學性質

Translated Titles

The optoelectronic, magnetic and mechanical properties of C84 molecule embedded Si (111) substrate

DOI

10.6845/NCHU.2012.01130

Authors

黃國祐

Key Words

超高真空 ; 掃描穿隧顯微術 ; 原子力顯微鏡 ; 富勒稀 ; 光致激發 ; UHV ; STM ; AFM ; fullerene ; photoluminescence

PublicationName

中興大學物理學系所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

何孟書

Content Language

繁體中文

Chinese Abstract

本研究在超高真空腔體下,控制自組裝機制製造單層及多層C84分子嵌入Si(111)表面。利用超高真空掃描探針顯微術觀察樣品表面之形貌,量測其電流-電壓曲線,並計算其能隙大小。利用光致激發光光譜儀(Photoluminescence),在室溫及77K下分析其光電特性。因量子侷限效應,本樣品具有寬能隙及發射藍紫光的特性。 在超高真空環境下使用原子力顯微鏡,分別量測不同樣品表面之剛性(stiffness),以及黏滯力(adhesion force)後,再使用不同spring constant之探針比較兩者之差別,發現無論何種懸臂之探針,其剛性大小皆為C84 overlayer>Si(111)-7x7>Si disorder,黏滯力則相反,且樣品之剛性最終會趨近於懸臂本身之spring constant。 使用超導量子干涉儀(SQUID),對樣品進行磁性量測,但因碳八十四嵌入矽基板表面之interface層與基板本身之大小差異甚大,所以訊號較差,需再另行處理樣品,如將試片磨薄等,以期得到較佳之結果。   本研究結果可得知,藉由在超高真空環境下,控制自我組裝機制使碳八十四分子嵌入矽基板,可得到發藍紫光之寬能隙材料,並且樣品之表面剛性亦會增加。

English Abstract

In this study, the control mechanism to create self-assembled monolayer and multilayer C84 molecules embedded in Si (111) surface of the substrate in ultra-high vacuum chamber . We used the ultra-high vacuum scanning probe microscopy to observe the surface morphology of C84 molecules embedded Si (111) , and measure the current - voltage curve to calculate the size of the band gap. The use of Photoluminescence, at room temperature and 77K are the analysis of this substrate under the optical and electrical properties. The results shows the self-assembly of C84 molecules embedded in silicon (111) surface of the substrate with a wide band gap and emission characteristics of blue-violet light by quantum confinement effect. After using UHV-atomic force microscope to measure the stiffness and adhesion force of different sample surface, we measured the mechanical properties of samples with different probes and compared the differences of using different probes. We find that the stiffness magnitude is C84 overlayer>Si(111)-7x7>Si disorder no matter what the cantilever is. And the adhesion force is opposite. We used the Superconducting Quantum Interference Device to measure the magnetic property. However the signal is very weak because of the size of the substrate is larger than the interface layer. Grounding the sample might enhance the signal because the effect of substrate can be remove. To sum up, a material with a wide band gap and emission characteristics of blue-violet light by controlling mechanism to create self-assembled monolayer and multilayer C84 molecules embedded in Si (111) surface of the substrate in ultra-high vacuum chamber and the stiffness of the sample surface will rise, too.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
Reference
  1. 〔4〕 Feng Yan, Xi-mao Bao, and Xaio-wei Wu, Hui-lan Chen, Appl. Phys. Lett., 67, 23(1995)
    連結:
  2. 〔13〕 C. Julian Chen, Introduction to Scanning Tunneling Microscopy, Oxford, (1993)
    連結:
  3. 〔15〕 I. S. Hwang, R. L. Lo, and T. T. Tsong, Phys. Rev. Lett., 78, 4797(1997)
    連結:
  4. 〔16〕 I. S. Hwang, S. H. Chang, and T. T. Tsong, Phys. Rev. Lett., 80, 4229(1998)
    連結:
  5. 〔19〕 Arthur Beiser, Concepts of modern physics, 6th ed. (McGraw-Hill, New York; Boston, 2003)
    連結:
  6. 〔22〕 方維倫、牛寰等編著。奈米檢測技術。國家實驗研究院儀器科技研究中心出版,2009
    連結:
  7. 〔24〕 Timothy H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces.”in Encyclopedia of Analytical Chemistry, R. A. Meyers, Davidson College, Davidson, USA, 2000
    連結:
  8. 〔25〕 Roya R. Lahiji, Xin Xu, Ronald Reifenberger,, Arvind Raman,§ Alan Rudie ,and Robert J. Moon, Langmuir 2010, 26(6), 4480–4488.
    連結:
  9. 〔26〕 P. Martins1, P. Delobelle, C. Malhaire1, S. Brida, D. Barbier, The European Physical Journal Applied Physics 45, 1 (2009) 10501
    連結:
  10. 〔27〕 Contact mechanics
    連結:
  11. 〔1〕 Liang-Sheng Liao, Xi-Mao Bao, Zhi-Feng Yang, and Nai-Ben Min, Appl. Phys. Lett., 66, 18(1995)
  12. 〔2〕 X. L. Wu, G. G. Siu, Stokes, D. L. Fan, Y. Gu, and X. M. Bao, Appl. Phys. Lett., 77, 9(2000)
  13. 〔3〕 S. S. Deng, X. L. Wu, J. Li, C Tan, X. Yang, Y. Gu, and X. M. Bao, J. Phys.:Condens. Matter, 14, (2002)L739-L744
  14. 〔5〕 田民波。薄膜技術與薄膜材料。台北市:五南,2007
  15. 〔6〕 R. E. Schlier and H. E. Farnsworth, J. Chem. Phys., 30, 917 (1959).
  16. 〔7〕 K. Takayanagi, Y. Tanishiro, S. Takahashi and M. Takahashi, Surf. Sci., 164, 367 (1985)
  17. 〔8〕 羅榮立,物理雙月刊,25(5),686 (2003).
  18. 〔9〕 H. W. Kroto, J. R. Heath, S. C. O’ Brien, R. F. Curl and R. E. Smalley, Nature, 318, 162 (1985)
  19. 〔10〕 沈海軍,劉根林編著。新型碳納米材料-碳富勒烯。北京:國防工業出版社,2008
  20. 〔11〕 Kroto, H.W.Nature. 318,(1985)162–163
  21. 〔12〕 G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel , Phys. Rev. Lett. 49, 57 (1982)
  22. 〔14〕 Ernst Ruska, Gerd Binnig, Heinrich Rohrer, The Nobel Prize in Physics (1986).
  23. 〔17〕 D. M. Eigler and E. K. Schweizer, Nature, 344, 524(1990)
  24. 〔18〕 G. Binning, C. F. Quate and Ch. Gerber, Phys. Rev. Lett., 56, 930 (1986).
  25. 〔20〕 R. E. Schlier and H. E. Farnsworth, J. Chem. Phys., 30, 917 (1959)
  26. 〔21〕 伍秀菁、汪若文等編輯。真空技術與應用。新竹市:國科會精儀中心,2001
  27. 〔23〕 郭正次,「激發光光譜分析」,汪建民主編,材料分析。新竹市:中國材料學會,民87。頁237-258
  28. 〔28〕 Chih-Pong Huang, Chih-Chuan Su,Wan-Sheng Su,Chiao-Fang Hsu, and Mon-Shu Ho, APPLIED PHYSICS LETTERS 97, 061908 _2010_
  29. 〔29〕 徐巧芳,國立中興大學(2011)
  30. 〔30〕 L. S. Monastyrskyi, O.I.Aksimentyeva, M.R. Pavlyk, V.P.Savchyn & L.I.Yaryc'ka
  31. 〔31〕 邱凡芸,國立中興大學(2011)
  32. 〔32〕 T. L. Makarova, B. Sundqvist, R. Ho‥hne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova, and A.V. Rakhmanina, Nature (London), 413, 716 (2001).