Title

發展鏈黴菌Streptomyces griseobrunneus SGS3可濕性粉劑以防治青椒疫病Phytophthora capsici

Translated Titles

Development of a wettable powder formulation of Streptomyces griseobrunneus SGS3 for the control of pepper blight caused by Phytophthora capsici

Authors

劉書妤

Key Words

鏈黴菌 ; 青椒疫病 ; 可濕性粉劑 ; 儲架壽命 ; 商品化 ; Streptomyces ; pepper blight ; wettable powder formulation ; shelf life ; commercial product

PublicationName

中興大學植物病理學系所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

曾德賜

Content Language

繁體中文

Chinese Abstract

青椒疫病是栽培青椒過程中重要的病害之一,常在台灣的颱風或雨季過後病害發生尤為嚴重,該病由青椒疫病菌Phytophthora capsici 所引起的;而供試鏈黴菌Streptomyces griseobrunneus SGS3為賴氏 (2003) 於台中太平的柑桔根圈土壤分離所得,已證實其對卵菌綱病原菌及部分土壤傳播性真菌所造成的病害具優異的防治潛力,包括造成甜椒根腐及猝倒的立枯絲核菌 (Rhizoctonia solani AG4)、以及甜椒炭疽病菌 (Colletotrichum gloeosporioides)。經750 L發酵槽所製程的發酵液量產技術也已建立,主要型態以氣生孢子為主,其菌量可達2 x 1011 CFU/mL。本研究目的為開發SGS3可濕性粉劑劑型,並探討其應用防治策略。首先,以膨潤土、二氧化矽及微晶纖維作為擔體材料,並以流體造粒機所製成的可濕性粉劑劑型 (SGS3 WP),可維持粉體菌量在2.91 x 1010 CFU/g。在為期一年的儲架壽命測試上,SGS3發酵液存放在6℃的菌量為4.62 x 105 CFU/mL,但在室溫環境下則菌量快速減少。粉劑在6℃及室溫下的菌量分別為1.1 x 109和7.7 x 108 CFU /g,顯示粉劑之儲架壽命優於發酵液,且在青椒葉片菌量殘存能力上表現亦較發酵液為佳。在青椒離葉及果實之接種防治上,處理發酵液稀釋100倍與粉劑100倍皆能有效防治病害發生,且發酵液稀釋100倍亦可有效抑制P. capsici孢囊及游走孢子發芽,進一步混合卵菌綱推薦用藥,證實殺菌劑賽座滅、亞托敏、依得利及普拔克依其推薦濃度使用並混合SGS3發酵液 100倍處理除了對抑制孢囊發芽及菌絲生長具有加成作用之外,亦可有效防治青椒幼苗及果實上病害的發生,且SGS3亦具有促進青椒植株生長的效果,其中又以SGS3發酵液稀釋100倍對青椒植株之株高、株徑、地上部及地下部之鮮重及乾重之生長促進效果最為顯著。在溫室青椒幼苗接種試驗上,SGS3發酵液之防治效果以同時接種病原菌和處理菌液100倍時效果最佳,發病率為15.4%;而粉劑則以先處理再接種粉劑100倍時效果最佳,發病率為8.1%。在以建立的疫病菌帶病土之接種系統中,證實混合粉劑1% (v/v)及0.5% (v/v) 皆能有效防治病害發生,可將發病率分別降至7.07及9.07%;而將粉劑應用於青椒種子之種衣披覆,以50及100% 粉劑製成之種衣披覆之種子可有效增加青椒幼苗之存活率,並於種植後一周澆灌SGS3發酵液100倍更能有效防治青椒疫病的發生。在田間試驗中,亦證實SGS3發酵液稀釋100倍對青椒疫病具有防治效果,且添加SGS3粉劑混拌後的介質以及將SGS3發酵液搭配依得利進行混合防治確實可以增加對青椒疫病的防治效果。綜合上述試驗結果,顯示Streptomyces griseobrunneus SGS3之發酵液與所開發之可濕性粉劑皆具有針對青椒疫病之防治效果及商品化之潛力。

English Abstract

Phytophthora blight of pepper caused by Phytophthora capsici is one of the most important diseases in pepper cultivation. Severe damage was usually observed during typhoon or raining seasons in Taiwan. The antagonistic Streptomyces griseobrunneus SGS3 isolated from Taichung was shown of great potential as a microbial bio-agent for the control of plant diseases caused by Oomycetes and some soil-borne true fungi, including pepper root rot or damping-off caused by Rhizoctonia solani AG4 and anthracnose caused by Colletotrichum gloeosporioides. And a standard operation protocol for mass production of anthrospore formulation of the bacteria was established by a 750 L fermenter. The spore yield reached approximately 2 x 1011 CFU/mL. This research was aimed to develope a wettable powder (WP) formulation for the control of pepper Phytophthora blight. Using bentonite, silica and microcrystalline cellulose as the carriers, a wettable powder (SGS3 WP) with 2.91 x 1010 CFU /g without contamination was prepared by a Fluid Bed Dryer. Examination of the shelf life of the attempted formulation after one year storage indicated a better performance of SGS3 WP comparing to that of liquid culture broth. For broth culture kept at 6℃, the survival count was 4.62 x 105 CFU/mL. Whereas for those kept at room temperature, a rapid decline of the bacterial propagule was detected. As for the compared SGS3 WP formulation, the survival count detected after stored for one year at 6℃ and at room temperature, respectively, was 1.1 x 109 CFU /g and 7.7 x 108 CFU /g. The SGS3 WP formulation also gave a better survival of the applied bacteria on pepper leaves. On a detached pepper leaves and fruits system artificially inoculated with P. capsici, the application of SGS3 broth culture and WP formulation each at 100-fold dilution both showed significant effectiveness in reducing the fungal infection. As for inhibition of sporangium and zoospore germination, a better performance of SGS3 at 100-fold dilution was detected. Augmentation of SGS3 broth culture supplementation with the selected oomycete fungicides including cyazofamid, azoxystrobin, etridiazole and propamocarb each at recommended concentration was significant not only on the inhibitory effectiveness of sporangial germination and hyphal growth, but also on the disease control of pepper seedlings and fruits. Effect of growth promotion was also shown on the plant height, plant stem diameter, aboveground and underground fresh weight and dry weight of the pepper seedlings treated with 100X diluted SGS3 broth culture. In greenhouse trial, application of 100X diluted SGS3 broth culture and inoculating with the pathogen simultaneously effectively controlled the infection of P. capsici on pepper seedlings. The disease incidence was 15.4%. Whereas the application of 100X diluted SGS3 WP formulation 1 day before inoculating with the pathogen showed an even better effectiveness. The disease incidence was 8.1%. And for the pathogen-infested soil system, amendment of 1% (v/v) and 0.5% (v/v) WP formulation respectively, was also effective in controlling the fungal infection. Each disease incidence was 7.07% and 9.07%. Application of seed coating with 50% (v/v) and 100% (v/v) WP formulation respectively, also showed great survival abilities on pepper seedlings. Moreover, with another treatment of SGS3 broth culture at 100-fold dilution by spraying 1 week after seeds plantation, better survival abilities were confirmed. In the field trail, treatment of SGS3 broth culture at 100-fold dilution was also shown great effectiveness for disease control. With the amendment of SGS3 WP mix with the cultivation medium, or the combined-treatment of SGS3 broth culture and the fungicide, etridiazole, better disease control were also confirmed. The evidence accumulated so far indicated clearly the usefulness of both liquid broth culture and the developed WP formulation for controlling Phytophthora blight on pepper, and the potential to develop the WP formulation as a commercial product.

Topic Category 農業暨自然資源學院 > 植物病理學系所
生物農學 > 植物學
Reference
  1. 石信德、黃振文。2010。鏈黴菌生物製劑之應用潛力。農業生技產業季刊24: 38-46。
    連結:
  2. 行政院農業委員會農業藥物毒物試驗所- 植物保護手冊。2015。http://www.tactri.gov.tw/wSite/htdocs/ppmtable/vedfr-25.pdf
    連結:
  3. 杜冠毅。2014。應用鏈黴菌Streptomyces spp. 促進植物生長及根系調節物質之探討。台中:國立中興大學植物病理所碩士論文。69pp。
    連結:
  4. 林佳蓉。2011。Streptomyces sp. Strain S1 抗生物質之產生及其於卵菌綱病原危害防治之作用機制探討。台中:國立中興大學植物病理所碩士論文。76pp。
    連結:
  5. 林美芳。2012。種子經木黴菌披衣處理對甘藍生長與病害防治之影響。雲林。國立虎尾科技大學碩士論文。60pp。
    連結:
  6. 郝秀花。2012。網室甜椒害蟲與害蟎種類之調查及防治藥物之篩選。臺灣農業研究62(2): 165-173。
    連結:
  7. 陳俊位。2014。微生物農藥的開發與應用。台中區農業資訊87:7-13。
    連結:
  8. 陳俊良。2015。鏈黴菌 Streptomyces sp. S1 菌株作為木瓜疫病Phytophthora palmivora防治生物製際之應用潛力。台中:國立中興大學植物病理所碩士論文。69 pp。
    連結:
  9. 陳昭容、王添成、鍾文鑫。2010。臺灣番椒上之番椒疫病菌(Phytophthora capsici)對滅達樂之抗感性分析。植病會刊19:271-279。
    連結:
  10. 楊秀珠、余思葳。2012。甜椒、辣椒之病蟲害發生與管理。行政院農業委員會農業藥物毒物試驗所編印。
    連結:
  11. 楊曼君。2009。拮抗性鏈黴菌S1和S3菌株之抗生物質生產與特性分析。台中:國立中興大學植物病理所碩士論文。112pp。
    連結:
  12. Aldesuquy, H. S., Mansour, F. A., and Abo-Hamed, S. A. 1998. Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol. (Praha). 43: 465-470.
    連結:
  13. Baker, K. F. and Snyder, W. C. 1965. Ecology of soil-borne plant pathogens. Prelude to biological control. University of California, Berkeley. 571pp.
    連結:
  14. Benna, M., Kbir-Ariguib, N., Clinard, C. and Bergaya, F. 2001. Static filtration of purified sodium bentonite clay suspensions. Effect of clay content. Appl Clay Sci. 19: 103-120.
    連結:
  15. Burges, H. D. 1998. Formulation of microbial pesticides. Kluwer Academic Publishers. Dordrecht, The Netherlands.
    連結:
  16. Café-Filho, A. C., and Ristaino, J. B. 2008. Fitness of isolates of Phytophthora capsici resistant to mefenoxam from squash and pepper fields in North Carolina. Plant Dis. 92:1439-1443.
    連結:
  17. Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Pythopathol. 31: 53-80.
    連結:
  18. Davidse, L. C., Hofman, A. E. and Velthuis, G. C. M. 1983. Specific interference of metalaxyl with endogenous RNA polymerase activity in isolated nuclei from Phytophthora megasperma f. sp. medicaginis. Exp. Mycol. 7: 344-361.
    連結:
  19. Dobrat, W and Martijn, A. 1995. CIPAC Handbook F. Physio-chemical Methods for Technical and Formulated Pesticides. W. Dobrat and A. Martijn eds. 472pp.
    連結:
  20. El-Tarabily, K.A. 2008. Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase–producing Streptomycete actinomycetes. Plant Soil. 308: 161-174.
    連結:
  21. Flärdh, K. and Buttner, M. J. 2009. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7: 36-49.
    連結:
  22. Fravel, D. R. 1988. Role of antibiosis in the control of plant disease. Annu. Rev. Phytopathol. 26: 75-91.
    連結:
  23. Gisi, U., Waldner, M. Kraus, N., Dubuis, P. H. and Sierotzki, H. 2007. Inheritance of resistance to carboxylic acid amide (CAA) fungicides in Plasmopara viticola. Plant Pathol. 56: 199-208.
    連結:
  24. Gopalakrishnan, S., Vadlamudi, S., Apparla, S., Bandikinda, P., Vijayabharathi, R., Bhimineni, R. K. and Rupela, O. 2013. Evaluation of Streptomyces spp. for their plant-growth-promotion traits in rice. Can. J. Microbiol. 59: 534-539.
    連結:
  25. Gunarantna, K. R. and Balasubramanian, R. 1994. Partial purification and properties of extracellular chitinase produced by Acremonium obclavatum, an antagonist to groundnut rust, Puccinia arachidis. World J. Microbiol. Biotechnol. 10: 342-345.
    連結:
  26. Haran, S., Schickler, H., Peer, S., Logemann, S., Oppenheim, A. and Chet, I. 1993. Increased constitutive chitinase activity in transformed Trichoderma harzianum. Biol Control. 3: 101-108.
    連結:
  27. Hausbeck, M.K. and Lamour, K. H. 2004. Phytophthora capsici on vegetable crops: Research progress and management challenges. Plant Dis. 88: 1292-1303.
    連結:
  28. Ihrmark, K., Asmail, N., Ubhayasekera, W., Melin, P., Stenlid, J. and Karlsson, M. 2010. Comparative molecular evolution of trichoderma chitinases in response to mycoparasitic interactions. Evol. Bioinform. Online. 6: 1-26.
    連結:
  29. Jeffers, S. N. and Martin, S. B. 1986. Comparison of two media selective for Phytophthora and Pythium species. Plant Dis. 70: 1038-1043.
    連結:
  30. Joo, G. J. 2005. Production of an anti-fungal substance for biological control of Phytophthora capsici causing phytophthora blight in red-peppers by Streptomyces halstedii. Biotechnol. Lett. 27: 201-205.
    連結:
  31. Kato, H. 2001. Rice Blast Control. Pestic. Outlook.12: 23-25.
    連結:
  32. Kim, K. J., Yang, Y. J. and Kim, J. G. 2003. Purification and characterization of chitinase from Streptomyces sp. M-20. J. Biochem. Mol. Biol. 36: 185-189.
    連結:
  33. Lamour, K. H. and Hausbeck, M. K. 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology. 90: 396-400.
    連結:
  34. Lamour, K. H., Stam, R., Jupe, J. and Huitema, E. 2012. The oomycete broad-host-range pathogen Phytophthora capsici. Mol. Plant Pathol. 13: 329-337.
    連結:
  35. Lee, F. N. and Rush, M. C. 1983. Rice sheath bight: a major rice disease. Plant Dis. 67: 829-832.
    連結:
  36. Lee, S. Y., Tindwa, H., Lee, Y. S., Naing, K. W., Hong, S. H., Nam, Y. and Kim, K. Y. 2012. Biocontrol of anthracnose in pepper using chitinase, β-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. J. Microbiol. Biotechnol. 22: 1359-1366.
    連結:
  37. Lim, J. H. and Kim, S. D. 2010. Biocontrol of Phytophthora blight of red pepper caused by Phytophthora capsici using Bacillus subtilis AH18 and B. lichenformis K11 formulations. J. Korean Soc. Appl. Biol. Chem. 53: 766-773.
    連結:
  38. Lingappa, Y., and Lockwood, J. L. 1962. Chitin medium for selective isolation and culture of actinomycete. Phytopathology. 52: 317-323.
    連結:
  39. Lu, X. H., Hausbeck, M. K., Liu, X. L., and Hao, J. J. 2011. Wild type sensitivity and mutation analysis for resistance risk to fluopicolide in Phytophthora capsici. Plant Dis. 95:1535-1541.
    連結:
  40. Mathew, A. P., Oksman, K. and Sain, M. 2005. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J. Appl Polym Sci. 97: 2014-2025.
    連結:
  41. McBride, M. J. and Ensign, J. C. 1990. Regulation of trehalose metabolism by Streptomyces griseus spores. J. Bacteriol. 172: 3637-3643.
    連結:
  42. Miyadoh, S. 1993. Research on antibiotic screening in Japan over the last decade: a producing microorganism approach. Actinomycetol. 7: 100-106.
    連結:
  43. Naing, K. W., Anees, M., Nguyen, X. H., Lee, Y. S., Jeon, S. W., Kim, S. J., Kim, M. H. and Kim, K. Y. 2014. Biocontrol of late blight disease (Phytophthora capsici) of pepper and the plant growth promotion by Paenibacillus ehimensis KWN38. J. Phytopathol. 162: 367-376.
    連結:
  44. Nguyen, X. H., Naing, K. W., Lee, Y. S., Tindwa, H., Lee, G. H., Jeong, B. K., Ro, H. M., Kim, S. J., Jung, W. J. and Kim, K. Y. 2012. Biocontrol potential of Streptomyces griseus H7602 against root rot disease (Phytophthora capsici) in pepper. Plant Pathol. J. 28: 282-289.
    連結:
  45. Ozgonena, H. and Erkilic, A. 2007. Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Prot. 26: 1682-1688.
    連結:
  46. Parra, G., and Ristaino, J. B. 2001. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis. 85:1069-1075.
    連結:
  47. Rueda, B., Miguélez, E. M., Hardisson, C. and Manzanal, M. B. 2001. Mycelial differentiation and spore formation by Streptomyces brasiliensis in submerged culture. Can. J. Microbiol. 47: 1042-1047.
    連結:
  48. Sabaratnam, S. and Traquair, J. A. 2002. Formulation of a Streptomyces Biocontrol Agent for the Suppression of Rhizoctonia Damping-off in Tomato Transplants. Biol. Control. 23: 245-253.
    連結:
  49. Sakdapetsiri, C., Fukuta, Y., Aramsirirujiwet, Y., Shirasaka, N. and Kitpreechavanich, V. 2016. Antagonistic activity of endo-β-1,3-glucanase from a novel isolate, Streptomyces sp. 9X166, against black rot in orchids. J. Basic Microbiol. 56: 469-479.
    連結:
  50. Singh, A. K. and Chhatpar, H. S. 2011. Combined use of Streptomyces sp. A6 and chemical fungicides against fusarium wilt of Cajanus cajan may reduce the dosage of fungicides required in the field. Crop Prot. 30: 770-775
    連結:
  51. Singh, P. P., Shin, Y. C., and Chung, Y. R. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology. 89: 92-99.
    連結:
  52. Tokala, R. K., Strap, J. L., Jung, C. M., Crawford, D. L., Salove, M. H., Deobald, L. A., Bailey, J. F., and Morra, M. J. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl. Environ. Microbiol. 68: 2161-2171.
    連結:
  53. Trejo-Estrada S. R., Paszczynski A. and Crawford D. L. 1998. Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J. Ind. Microbiol. Biotechnol. 21: 81-90.
    連結:
  54. Tu, J. C. 2008. Antibiosis of Streptomyces griseus against Colletotrichum lindemuthianum. J. Phytopathol. 121: 97-102.
    連結:
  55. Williams, S. T., Lanning, S. and Wellington, E. M. H. 1984. Ecology of Actinomycetes. p481-528 in: M. Goodfellow, M. Mordarski, and S. T. Williams eds. The Biology of the Actinomycetes. Academic Press Ltd. London. United Kingdom.
    連結:
  56. 邱瓊瑩。2003。以鏈黴菌Streptomyces fimbriatus WRS9作為微生物製劑之潛力及鏈黴菌屬聚合酶連鎖反應專一檢測引子之發展。台中:國立中興大學植物病理所碩士論文。78pp。
  57. 柯欣志。2000。營養供給對放線菌Streptomyces saraceticus 31號菌株抗生物質與幾丁質分解酵素產生之影響。台中:國立中興大學植物病理所碩士論文。90pp。
  58. 黃玉梅。2015。種子披衣(Seed coating)技術研發。種苗產業發展新趨勢研討會專刊。73-80。
  59. 許富翔、陳欣孝、張盈盈、陳金堯、黃振文、蔡東篡、曾德賜。1997。放線菌Streptomyces saraceticus 31菌株之拮抗特性及其在植物病害防治應用。植病會刊6:208-209。
  60. 陳泰元。2005。Streptomyces griseobrunneus S3之非無菌增量培養其於腐霉病菌與立枯絲核菌危害防治之作用機制。台中:國立中興大學植物病理所碩士論文。 109 pp。
  61. 費雯綺、王喻其。2007。植物保護手冊-蔬菜篇。行政院農業委員會農業藥物毒物試驗所編印。229 pp。台中。
  62. 曾德賜。2015。農藥藥理與應用-殺菌劑。初版,151pp。台北:藝軒。
  63. 賴文瑞。2003。鏈黴菌Streptomyces griseobrunneus S3菌株作為植物真菌性病害防治應用生物製劑之發展。台中:國立中興大學植物病理所碩士論文。114pp。
  64. Brent, K. J. and Hollomon, D. W. 2007. Fungicide Resistance In Crop Pathogens: How can it be managed. Fungicide Resistance Action Committee. Bristol. UK. 57pp.
  65. Endo, A., Kakiki, K. and Misato, T. 1970. Mechanism of action of the antifungal agent polyoxin D. J Bacteriol. 104: 189-196.
  66. Iwasa, T., Yamamoto, H. and Shibata, M. 1970. Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var.,validamycin-producing organism. J. Antibiot. 23: 595-602.
  67. Lai, W. R. and Tzeng, D. S. 2002. Development of Streptomyces griseobrunneus S3 as a bioagent for the control of plant fungal disease. Plant Pathol. Bull. 11: 246-247.
  68. Locci, R. 1989. Streptomyces and related genera. Bergey’s Manual of Systematic Bacteriology. 4: 2451-2508.
  69. Lumsden, R. D., Lewis, J. A., and Fravel, D. R. 1995. Formulation and delivery of biocontrol agents for use against soilborne plant pathogens. P 166-182 in: Biorational Pest Control Agents: Formulation and Delivery. F. R. Hall and J. W. Barry, eds. American Chemical Society. Washington, DC.
  70. Matthews, G. A. 1992. Pesticide Application Methods. 2nd edn. Longman Scientific and Technical, Harlow. 431pp.
  71. Nassar, A.H., El-Tarabily, K.A., and Sivasithamparam, K. 2003. Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine producing isolate of Streptomyces griseoluteus. Plant Growth Regul. 40: 97-106.
  72. Pal, K. K. and Gardener, B. M. S. 2006. Biological Control of Plant Pathogens. The Plant Health Instructor. Ohio State. 25pp.
  73. Perner, H., Schwarz, D., and George, E. 2006. Effect of mycorrhizal inoculation and compost supply on growth and nutrient uptake of young leek plants grown on peat-based substrates. Hortscience. 41: 628-632.
  74. Sarwar, M. 2015. Usage of biorational pesticides with novel modes of action, mechanism and application in crop protection. Int. J. Mater. Chem. Phys. 1: 156-162.
  75. Segarra, G., Aviles, M., Casanova, E., Borrero, C. and Trillas, I. 2013. Effectiveness of biological control of Phytophthora capsici in pepper by Trichoderma asperellum strain T34. Phytopathol. Mediterr. 52: 77-83.
  76. Tahvonen, R., and Avikainen, H. 1987. The biological control of seed-borne Alternaria brassicicola of cruciferous plants with a powdery preparation of Streptomyces sp. J. Agr. Sci. Finland. 59: 199- 208.
  77. Tahvonen, R., and Lahdenperä, L. 1988. Biological control of Botrytis cinerea and Rhizoctonia solani in lettuce by Streptomyces sp. An. Agric. Fenniae. 27: 107-116.
  78. Yang, S. S., Chen, T. Y., and Tzeng, D. S. 2005. The role of ChiF gene expression in relating to mycoparasitism of Streptomyces griseobrunneus S3 on Rhizoctonia solani AG4 and Pythium aphanidermatum. Plant Pathol. Bull. 14: 147-158.
  79. Yuan, W. M., and D. L. Crawford. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Environ. Microbiol. 61: 3119-3128.