Title

整合微流體注入系統之微型Clark式氧氣晶片的研發

Translated Titles

Development of Miniature Clark Oxygen Sensor Integrated with Micro-Flow-Injection System

Authors

吳惠芳

Key Words

生物氧需求 ; 微小化流動式注入系統 ; Clark氧氣電極 ; biological oxygen demand ; micro-flow-injection system ; Clark-type oxygen electrode

PublicationName

中興大學生物產業機電工程學系所學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

碩士

Advisor

吳靖宙

Content Language

繁體中文

Chinese Abstract

生物氧需求(biological oxygen demand, BOD)的量測是監控生物體或生化反應活性的重要指標之一,此研究的目的主要是在探討可量測生物氧需求之微小化流動式注入分析系統的製作。此晶片主要是由微流道流動式注入(flow injection, FI)系統與晶片式Clark氧氣感測器所組合而成。實驗結果驗證以含有0.1 M KCl的0.1 M Tris-HCl buffer (pH 8.0)為電解液與SU8-coating的微流道組合,可得較低的殘餘電流量與較快的反應時間,以交替方式連續注入含零氧濃度亞硫酸鈉溶液與D.D. water測試晶片檢測特性,其結果顯示此系統具有良好的再現性(RSD: 1.28%),隨著樣本注入流速的增加,可降低的殘餘電流量。在微生物氧需求的測試上,可藉由所測得的耗氧率來分辨9.3×106 -9.3×109 μg mL-1不同濃度的E. coli菌液,並且可進行連續式樣本的量測,以縮短檢測時間與步驟,此Clark-FI晶片的開發將有助於提昇BOD檢驗的效率,並應用於微生物藥物敏感性快速檢測等領域。

English Abstract

The measurement of biological oxygen demand (BOD) is one of the important criterions for monitoring the biological or biochemical activity of organisms. The purpose of this study is to develop a miniature Clark-based micro-flow-injection (FI) system.This microchip consists of a flow injection system and a Clark-type oxygen electrode layer. The experimental results showed that the uses of the 0.1 M Tris-HCl buffer (pH 8.0) containing 0.1 M KCl and the SU8-coating microchannel can obtain the smaller residual current (RC) and the faster response time. When alternately injecting the zero-oxygen Na2SO3 solution and D.D. water into the detection system, the Clark-basd-FI chip presents a good reproducibility (RSD: 1.28%). Moreover, the faster the flow rate becomes, the lower RC can be obtained. In the measurement of microbial BOD, the Clark-based FI system can distinguish the various concentration of E. coli ranging from 9.3×106 to 9.3×109 cells/mL by evaluating the oxygen consumption ratio. The development of Clark-based-FI system can improve the detection efficiency of microbial BOD and carry out the susceptibility test of antibiotics.

Topic Category 農業暨自然資源學院 > 生物產業機電工程學系所
生物農學 > 生物環境與多樣性
工程學 > 電機工程
Reference
  1. [1] H. Suzuki, H. Arakawa and I. Karube, “Fabrication of a Sensing Module Using Micromachined Biosersors”, Biosen. Bioelec., 16 (2001) 725-733
    連結:
  2. [2] L. C. Clark, JR., R. Wolf, D. Granger and Z. Taylor, ”Continuous Recording of Blood Oxygen Tensions by Polarography”, Appl Physiol., 6 (1953) 189-193
    連結:
  3. [3] L. C. Clark, JR. and C. Lyons, “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery” Ann. N.Y. Acad. Sci., 102 (1962) 29-45
    連結:
  4. [4] A. J. Cunningham, “Introduction to Bioanalytical Sensors”, John Wiley & SonS, Inc., (1998)
    連結:
  5. [5] M. Koudelka, “Performance characteristics of a planar 'Clark-type'oxygen sensor”, Sens. Actuator., 9 (1986) 249-258
    連結:
  6. [6] H. Suzuki, E. Tamiya, I. Karube, “Fabrication of an Oxygen Electrode Using Semiconductor Technology”, Anal. Chem., 60 (1988) 1078-1080
    連結:
  7. [8] H. Suzuki, N. Kojima, A. Sugama, F. Takei, K. Ikegami, “Disposable Oxygen Electrodes Fabricated by Semiconductor Techniques and their Application to Biosensors”, Sens. Actuators B, 1 (1990) 528-532
    連結:
  8. [9] H. Suzuki, A. Sugama, N. Kojima, “Miniature Clark-type Oxygen Electrode with a Three-Electrode Configuration”, Sens. Actuators B, 2 (1990) 297-303
    連結:
  9. [10] H. Suzuki, N. Kojima, A. Sugama and F. Takei, “Development of a Miniature Clark-type Oxygen Electrode Using Semiconductor Techniques and its Improvement for Practical Applications”, Sen. Actuators B, 2 (1990) 185-191
    連結:
  10. [11] H. Suzuki, A. Sugama and N. Kojima, “Micromachined Clark Oxygen Electrode”, Sens. Actuators B, 10 (1993) 91-98
    連結:
  11. [12] Z. Yang, S. Sasaki, I. Karube, H. Suzuki, “Fabrication of Oxygen Electrode Arrays and their Incorporation into Sensors for Measuring Biochemical Oxygen Demand”, Anal. Chim. Acta., 357 (1997) 41-49
    連結:
  12. [13] H. Suzuki, H. Shiroishi, S. Sasaki, I. Karube, “Microfabricated Liquid Junction Ag/AgCl Reference Electrode and its Application to a one-chip Potentiometric Sensor”, Anal. Chem., 71 (1999) 5069-5075
    連結:
  13. [14] H. Suzuki, T. Hirakawa, S. Sasaki, I. Karube, ” An Integrated Three-Electrode System with a Micromachined Liquid-Junction Ag/AgCl Reference Electrode”, Anal. Chim. Acta., 387 (1999) 103-112
    連結:
  14. [15] H. Suzuki, T. Hirakawa, S. Sasaki, I. Karube, “An Integrated Module for Sensing pO2, pCO2, and pH”, Anal. Chim. Acta., 405 (2000) 57-65
    連結:
  15. [16] L.W. WINKLER, “The determination of dissolved oxygen in water. Deut.Chem. Ges. Berlin., 21 (1988) 2843-2855
    連結:
  16. [17] Otto S. wolfbeis, “Fiber Optic Chemical Sensors and Biosensors”, Volume 2, CRC., (1991)
    連結:
  17. [18] Otto S. Wolfbeis, “Fiber-Optic Chemical Sensors and Biosensors”, Anal. Chem., 80 (2008) 4269-4283
    連結:
  18. [19] M.A. Arnold “Fiber Optic Chemical Sensors”. Anal. Chem., 64 (1992) 1015A-1025A
    連結:
  19. [20] J.F. Gouin, F. Baros, D. Birot and J.C. Andre “A fibre-optic oxygen sensor for oceanography”, Sen. Actuators B, 39 (1997) 401-406
    連結:
  20. [21] A. Mills and M. Thomas, “Fluorescence-based Thin Plastic Film Ion-pair Sensors for Oxygen”, Analyst., 122 (1997) 63-68
    連結:
  21. [22] P.M. Gewehr and D.T. Delpy, “Optical oxygen sensor based on phosphorescence lifetime quenching and employing a polymer immobilized metalloporphyrin probe”, Part 1 Theory and Instrumentation, Med. Biol. Eng. Comp. (1993)
    連結:
  22. [23] M.J.P. Leiner, “Luminescence chemical sensors for biomedical applications: scope and limitations” Anal. Chim. Acta., 255 (1991) 209-222
    連結:
  23. [24] Y.F.L. Philip and N. Ramaier, “Oxygen-sensitive optical fibre transducer” Analyst., 114 (1989) 1191-1195
    連結:
  24. [25] D.M. Brian, M.M. Colette, O. Gerard, T.K. Emmetine, G.V. Johannes, O. Brendan and F.M. John, “Fibre optic oxygen sensor based on fluorescence quenching of evanescent-wave excited ruthenium complexes in sol–gel derived porous coatings”, Analyst., 118 (1993) 385-388
    連結:
  25. [26] K.P. McNamara, X. Li, A.D. Stull and Z. Rosenzweig, “Fiber-optic oxygen sensor based on the fluorescence quenching of tris (5-acrylamido, 1,10 phenanthroline) ruthenium chloride”, Anal. Chim. Acta, 361 (1998) 73-83
    連結:
  26. [28] M. A. Schwarz and P. C. Hauser, “Recent Developments in Detection Methods for Microfabricated Analytical Devices” Lab on a Chip, 1 (2001) 1-6
    連結:
  27. [29] M.L Hichman. “The measurement of dissolved oxygen”. J. Wiley, New York. (1978)
    連結:
  28. [31] Feynman, R. P., “There’s Plenty of Room at the Bottom”, J. MEMS., 1 (1992) 60-66
    連結:
  29. [32] A. Manz, N. Graber and H. M. Widmer, “Miniaturized Total Chemical Analysis: a Novel Concept for Chemical Sensing” Sens. Actuators B, 1 (1990) 244-248
    連結:
  30. [33] D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, “Micro Total Analysis Systems. 1. Introduction, Theory, and Technology” Anal. Chem., 74 (2002) 2623-2636
    連結:
  31. [34] P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. manz, “Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications” Anal. Chem., 74 (2002) 2637-2652
    連結:
  32. [35] S. J. Lee and S. Y. Lee, “Micro total analysis system (μ-TAS) in biotechnology” Appl. Microbiol. Biotechnol., 64 (2004) 289-299
    連結:
  33. [36] C.C. Wu, T. Yasukawa, H. Shiku and T. Matsue. “Fabrication of Miniature Clark Oxygen Sensor Integrated with Microstructure” Sens. Actuators B, 110 (2005) 342-349
    連結:
  34. [37] K. Mitsubayashi, S. Iguchi, T. Endo, S. Tanimoto and D. Murotomi, “Flexible glucose sensor with a film-type oxygen electrode by microfabrication techniques”, IEEE, 2 (2003) 1201-1204
    連結:
  35. [39] T. Kaido, K. Timo, T. Toomas and N. Lauri, “Preparation and characterization of platinum coatings for long life-time BOD biosensor”, Sens. Actuators B, 47 (1998) 21-29
    連結:
  36. [40] Leonard T. Skeggs, “an Automatic Method for Colorimetric Anaylsis” Amer. J. Cin. Pathol., 28 (1957) 311-322
    連結:
  37. [41] J. Ruzicka and E.H. Hansen, “Flow Injection Analysis Part I. A New Concept of Fast Continuous Flow Analysis” Anal. Chim. Acta, 78 (1975) 145-157
    連結:
  38. [42] J. Ruzicka and E.H. Hansen, “Integrated Microconduits for Flow Injection Analysis” Anal. Chim. Acta, 161 (1984) 1-25
    連結:
  39. [43] D. J. Harrison, A. Manz, Z. Fan H. Ludi, AND H. M. Widmer, “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Chip” Anal. Chem., 64 (1992) 1928-1932
    連結:
  40. [44] A. T. Woolley and R. A. Mathie, “Ultra-High-Speed DNA Sequencing Using Capillary Electrophoresis Chips” Anal. Chem., 67 (1995) 3676-3680
    連結:
  41. [45] A. T. Woolley, D. Hadley, P. Landre, A. J. deMello, R. A. Mathies and M. A. Northrup, “Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device” Anal. Chem., 68 (1996) 4081-4086
    連結:
  42. [46] H. Michael, S. Wolfgang, J. Knut and S. Hanns-Ludwig, “Microbial biosensor array with transport mutants of Escherichia coli K12 for the simultaneous determination of mono-and disaccharides”, Biosen. Bioelec., 17 (2002) 1089-1094
    連結:
  43. [47] Y. Yukio, N. Manami, H. Hiromistu, I. Satoshi, M. Takashi, O. Satoshi, A. Yasukazu, “Application of microbial sensor to the quality control of meat freshness”, Talanta, 54 (2001) 255-262
    連結:
  44. [48] X. Younan and M.W. George, “Soft lithography”, Annu. Rev. Mater. Sci., 28 (1998) 153-184
    連結:
  45. [7] H. Suzuki, E. Tamiya and I. Karube, ”Development of micro-oxygen electrode and its application to micro-glucose sensor”, Proc. MRS Int. Meeting on Advanced Materials, 14 (1988) 115-120
  46. [27] G. Ignacy, G. Zygmunt, R.L. Joseph and R.Govind, “Polarization-based oxygen sensor”, Analyst, 124 (1999) 1041-1044
  47. [30] Feynman RP. “There’s plenty of room at the bottom”. In:Gilbert HD, editor. Miniaturization. New York: Reinhold Publishing Corporation, (1961) 282-96
  48. [38] H. Kudo, T. Sawada, M.X. Chu, T. Saito, H. Saito, K. Otsuka, Y. Iwasaki, K. Mitsubayashi, “Flexible Glucose Sensor Using Biocompatible Polymers”, IEEE. (2007) 620-623
Times Cited
  1. 郭聿芬(2011)。金奈米結構表面特性對超氧化物歧化酶之電子轉移特性的探討。中興大學生物產業機電工程學系所學位論文。2011。1-123。