Title

雙苯並咪唑鹽類在鈴木偶合反應及不對稱碳碳偶合反應的研究

Translated Titles

The Study of Bis-benzimidazolium Salts in Suzuki-Miyaura Coupling Reaction and Asymmetric C-C Formation

Authors

林湙人

Key Words

雙苯並咪唑 ; 鈴木偶合反應 ; 不對稱碳碳偶合反應 ; 不對稱 ; 偶合反應 ; 碳烯 ; 鈴木–宮浦 ; Suzuki-Miyaura ; N-heterocyclic carbene ; carbene ; Coupling Reaction ; Asymmetric

PublicationName

中興大學化學系所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

陸大榮

Content Language

繁體中文

Chinese Abstract

近年來,鈀金屬含氮雜環碳烯被廣泛地應用在鈴木偶合反應,然而多數配體在水溶液中活性較低,因此反應必須使用有機溶劑。 聯苯結構在許多藥物及天然物中是很重要的結構,若能利用鈴木反應合成具有不同官能基的聯苯結構之藥物及天然物是一個很重要的課題。 我們利用苯並咪唑為主的架構合成出雙含氮雜環碳烯78,其前驅物是由鄰苯二胺與原甲酸三乙酯反應生成化合物71,接著與2-溴丙烷進行取代反應得到化合物72c,最後與1,3-二溴丙烷反應形成配體78。配體78對於鈴木反應具中不同官能基的反應物,大部分的溴化物在溫和的反應條件 (40 ºC) 可得到相當高的產率 (86−99%),並對許多官能基的容忍度相當好;而少部分受質,只需稍微升高溫度 (60 ºC),即可達到89−99%產率。 本研究所開發之方法對於新型配體的合成,其操作步驟容易、簡短,所需的反應物價格便宜。配體具有在空氣中極為穩定且不怕濕氣的特性。雙含氮雜環碳烯與鈀金屬所形成之催化劑,成功地在水相中進行鈴木偶合反應,減少有機溶劑之使用量,若能將此配體應用到產業上,能夠有效地降低成本。

English Abstract

Recently, the N-heterocyclic carbene based Pd catalysts (Pd–NHC) have been widely used in the Suzuki coupling reaction. However, most of the ligands are less reactive in aqueous media. Therefore, organic solvent is required to be used for these reactions. In addition, the biaryl moiety is a central part in the structure of many natural products and drugs, therefore, the synthesis of biaryl structure has been an important topic in organic synthesis. The bis-benzimidaolium salts 78 have been successfully synthesized from commercially available and inexpensive o-phenylenediamine through a series of simple reactions in good yields. These catalysts derived by Pd(OAc)2 and bis-benzimidazolium salts are air and moisture stable, both in the solid state and in solution. Its high efficacy for Suzuki cross-coupling reaction of aryl bromides are found in aqueous media in the presence of Pd-catalyst and reduce the consumption of organic solvent. Functionalized aryl bromides, such as ketone, aldehyde, ester and nitro, are well-tolerated at 40ºC with excellent yields (86-99%). Di-ortho-substituted biaryls could be accomplished at 60ºC in 89-99% yields. In summary, our ligand is able to reduce costs significantly and simplify reaction operations effectively if it is applied to industrial processes.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學系所
Reference
  1. 1.Yin, L.; Liebscher, J., Chem. Rev. 2007, 107, 133.
    連結:
  2. 5.Tietze, L. F.; Noebel, T.; Spescha, M., J. Am. Chem. Soc. 1998, 120, 8971.
    連結:
  3. 6.Beletskaya, I. P.; Cheprakov, A. V., Chem. Rev. 2000, 100, 3009.
    連結:
  4. 7.Noyori, R., Adv. Synth. Catal. 2003, 345.
    連結:
  5. 8.Knowles, W. S., Angew. Chem. Int. Ed. 2002, 41, 1998.
    連結:
  6. 9.Sharpless, K. B., Angew. Chem. Int. Ed. 2002, 41, 2024.
    連結:
  7. 11.Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M., Angew. Chem. Int. Ed. 2005, 44, 5384.
    連結:
  8. 12.Christie, G. H.; Kenner, J. J., Chem. Soc., Trans. 1922,121, 614
    連結:
  9. 13.Miyrura, N.; Suzuki, A., Chem. Rev. 1995, 95, 2457.
    連結:
  10. 15.Littke, A. F.; Fu, G. C., J. Am. Chem. Soc. 2000, 122, 4020.
    連結:
  11. 17.Suzuki, A., J. Organomet. Chem. 1999, 576, 147.
    連結:
  12. 18.Jutand, A.; Amatore, C., Acc. Chem. Res. 2000, 33, 314.
    連結:
  13. 19.Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L., Angew. Chem. Int. Ed. 2004, 43, 1871.
    連結:
  14. 20.Hazelwood, S. L.; Limmert, M. E.; Befold, R. B., Chem. Eur. J. 2003, 9, 3216.
    連結:
  15. 21.Littke, A. F.; Fu, G. C., J. Am. Chem. Soc. 2001, 123, 6989.
    連結:
  16. 23.Micksch, M.; Strassner, T. E. J. I. C., 5872, Eur. J. Inorg. Chem. 2012, 5872.
    連結:
  17. 24.Yakusawa, T.; Miyamura, H.; Kobayashi, S., Chem. Soc. Rev. 2014, 43, 1450.
    連結:
  18. 30.Cesar, V.; Laponnaz, S. B.; Gade, L. H., Organometallics 2002, 21, 5204.
    連結:
  19. 31.Albert, K.; Gischdakis, P.; Rosch, N., Organometallics 1998, 17, 1608.
    連結:
  20. 41.(a) Peris, E.; Crabtree, R. H., Coord. Chem. Rev. 2004, 248, 2239; (b) Mata, J. A.; Poyatos, M.; Peris, E., Coord. Chem. Rev. 2007, 251, 841; (c) Luo, F. T.; Lo, H. K., J. Organomet. Chem. 2011, 696, 1262; (d) Godoy, F.; Segarra, C.; Poyatos, M.; Peris, E., Organometallics 2011, 30, 684; (e) Nan, G.; Rao, B.; Luo, M. A., ARKIVOC 2011, 29; (f) Fu, C. F.; Lee, C. C.; Liu, Y. H.; Peng, S. M.; Warsink, S.; Elsevier, C. J.; Chen, J. T.; Liu, S. T., Inorg. Chem. 2010, 49, 3011.
    連結:
  21. 45.Kantchev, E. A. B.; O'Brien, C. J.; Organ, M. G., Angew. Chem. Int. Ed. 2007, 46, 2768.
    連結:
  22. 47.Catala´n, J., J. Phys. Chem. B 2009, 113, 5951.
    連結:
  23. 49.Shaughnessy, K. H., Metal-Catalyzed Reactions in Water. Chapter 1: Metal-Catalyzed Cross-Couplings of Aryl Halides to Form C-C Bonds in Aqueous Media. 2013, 426.
    連結:
  24. 2.Tamao, K.; Miyaura, N., Top. Curr. Chem. 2002, 219.
  25. 3.(a) Littke, A. F.; Fu, G. C., Angew. Chem. Int. Ed. 2002, 41, 4176; (b) Phan, N. T. S.; Sluys, M. V. D.; Jones, C. W., Adv. Synth. Catal. 2006, 348, 609.
  26. 4.(a) Hiller, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P., J. Organomet. Chem. 2002, 653, 69; (b) Marion, N.; Nolan, S. P., Acc. Chem. Res. 2008, 41, 1440.
  27. 10.Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M., Chem. Rev. 2011, 111, 563.
  28. 14.Wang, R.; Twamley, B.; Shreeve, J. M., J. Org. Chem. 2006, 71, 426.
  29. 16.Adjabeng, G.; Brenstrum, T.; Wilson, J.; Frampton, C.; Robertson, A.; Hillhouse, J.; McNulty, J.; Capretta, A., Org. Lett. 2003, 5, 953.
  30. 22.Fujita, T.; Sakamoto, M.; Shirae, Y.; Mino, T., 2005, 70, 2191.
  31. 25.(a) Kocher, C.; Herrmann, W. A., J. Organomet. Chem. 1997, 532, 261; (b) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H., Org. Lett. 1999, 1, 953.
  32. 26.(a) Harlow, R.; Kline, M.; Jrduengo, A. J., J. Am. Chem. Soc. 1991, 113, 361; (b) Dixon, D.; Jrduengo, A. J., J. Phys. Chem. 1991, 95, 4180; (c) Dias, H.; Harlow, R.; Kline, M.; Jrduengo, A. J., J. Am. Chem. Soc. 1992, 114, 5530.
  33. 27.(a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G., Chem. Rev. 2000, 100, 39; (b) Garrison, J. C.; Youngs, W. J., Chem. Rev. 2005, 105, 3978.
  34. 28.Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F., Nature 2014, 510, 485.
  35. 29.Ray, L.; Shaikh, M. M.; Ghosh, P., Organometallics 2007, 26, 958.
  36. 32.(a) Tulloch, A. A. D.; Danopoulos, A. A.; Tooze, R. P.; Cafferkey, S. M.; Kleinhenz, S.; Hursthouse, M. B., Chem. Commun. 2000, 1247; (b) Tulloch, A. A. D.; Winston, S.; Danopoulos, A. A.; Eastham, G.; Hursthouse, M. B., Dalton Trans. 2003, 699; (c) Tsoureas, N.; Danopoulos, A. A.; Tulloch, A. A. D.; Light, M. E., Organometallics 2003, 22, 4750; (d) Tulloch, A. A. D.; Winston, S.; Danopoulos, A. A.; Winston, S.; Kleinhenz, S.; Eastham, G., Dalton Trans. 2000, 4499.
  37. 33.Herrmann, W. A.; Elison, M.; Fischer, J.; Kocher, C.; Artus, G. R. J.; Angew. Chem. Int. Ed. 1995, 2371., Angew. Chem. Int. Ed. 1995, 34, 2371.
  38. 34.Ros, A.; Monge, D.; Alcarazo, M.; Alvarez, E.; Lassaletta, J. M.; Fernandez, R., Organometallics 2006, 25, 6039.
  39. 35.Organ, M. G.; Abdel-Hadi, M.; Avola, S.; Hadei, N.; Nasielski, J.; O'Brien, C. J.; Valente, C. Chem. Eur. J. 2007, 13, 150.
  40. 36.Taige, M. A.; Zeller, A.; Ahrens, S.; Goutal, S.; Herdweck, E.; Strassner, T., Organometallics 2007, 692, 1519.
  41. 37.(a) Zhang, T.; Shi, M., Chem. Eur. J. 2008, 14, 3759; (b) Zhang, T.; Shi, M.; Zhao, M., Tetrahedron 2008, 64, 2412.
  42. 38.Wang, S.; Li, J.; Miao, T.; Wu, W.; Li, Q.; Zhuang, Y.; Zhou, Z.; Qiu, L., Org. Lett. 2012, 14, 1966.
  43. 39.Colobert, F.; Valdivia, V.; Choppin, S.; Leroux, F. R.; Fernández, I.; Alvarez, E.; Khiar, N., Org. Lett. 2009, 11, 5130.
  44. 40.Debono, N.; Labande, A.; Manoury, E.; Daran, J.-C.; Poli, R., Organometallics 2010, 29, 1879.
  45. 42.Li, Y.; Tang, J.; Gu, J.; Wang, Q.; Sun, P.; Zhang, D., Organometallics 2014, 33, 876.
  46. 43.Wang, F.; Tran-Dubé, M.; Scales, S.; Johnson, S.; McAlpine, I.; Ninkovic, S. T., Tetrahedron 2013, 54, 4054.
  47. 44.Bressi, J. C.; Jong, R. D.; Wu, Y.; Jennings, A. J.; Brown, J. W.; O’Connell, S.; Tari, L. W.; Skene, R. J.; Vu, P.; Navre, M.; Cao, X.; R., G. A., Bioorg. Med. Chem. Lett. 2010, 20, 3138.
  48. 46.Wong, S. M.; So, C. M.; Chung, K. H.; Lau, C. P.; Kwong, F. Y., Eur. J. Org. Chem. 2012, 4172.
  49. 48.Liu, C.; Ni, Q.; Bao, D.; Qiu, J., Green Chem. 2011, 13, 1260.
  50. 50.(a) Iwasawa, T.; Tokunaga, M.; Obora, Y.; Tsuji, Y., J. Am. Chem. Soc. 2004, 126, 6554; (b) Steinhoff, B. A.; Stahl, S. S., Org. Lett. 2002, 4, 4179.