Translated Titles

The effect of salinity on the skin mucous cell number and area of Barbronia weberi



Key Words

巴蛭 ; 黏液細胞 ; 鹽度 ; Barbronia weberi ; mucous cells ; salinity



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

生活汙水、工廠廢水與畜牧廢水等流入河川,對河川的水質造成影響,進而影響飲用水與灌溉用水。台灣沿海地區的農田灌溉用水經常使用地下水,造成沿海地區土壤鹽化。以往對旱溪水域研究發現,巴蛭僅分布於輕、中度汙染水域,可用為判定河川汙染的指標生物。進一步在汙染環境下對其生理適應研究發現,在水汙染的情況下,巴蛭梨狀分泌細胞的數量有增加的情況。由於河川中的汙染物種類與濃度並不固定,很難釐清其生理機制,因此選用鹽度為實驗室控制的因子,以野外採集的巴蛭於實驗室飼養繁殖的第一代為實驗材料,與海鹽配製海水,探討鹽度變化對巴蛭黏液細胞的影響。巴蛭的黏液成分中含有多醣類與蛋白質;以及巴蛭對海水的半致死濃度為33%,對應的鹽度約在10.25 ‰。在石蠟組織切片的結果中,圓形黏液細胞的數量與面積在30%海水處理下有顯著比12.5%、25%海水和控制組增加,梨狀分泌細胞的數量與面積在各海水濃度的處理下並沒有差別。顯示巴蛭在水中鹽度增加的時候,圓形黏液細胞增加分泌的黏液量,幫助巴蛭在低鹽度的水中存活。梨狀分泌細胞主要為酸性黏液,可能與防止微生物寄生有關,因此水中的鹽度變化不影響梨狀分泌細胞的數量與面積。巴蛭兩種黏液細胞所分泌的黏液在低、中度汙染環境下,能幫助巴蛭在受汙染的水中生存,此適應機制可能與巴蛭在因貿易進入歐美地區後,能存活於輕、中度汙染的淡水中以擴大入侵水域與有關。

English Abstract

The discharge of domestic wastewater, industrial effluents and livestock wastewater into river has had a great impact on the water quality of the river. It has been a common practice to use ground water for irrigation in the farm near the coastal areas, and caused land salinization in these regions in Taiwan. Barbronia weberi was identified as a biological indicator species for low and medium pollution water in Han River in central Taiwan. The mean number of pear shaped secretory cells counted in the samples of B. weberi collected from the river water with medium pollution level is greater than the samples collected from the river water with low pollution level. The environmental factor to cause the physiological mechanism of the cytological outcome is difficult to evaluate due to the dynamic changes of the chemical composition in the water. In order to find the physiological adaptation of B. weberi to a single environmental factor such as salinity, we collected wild B. weberi and bred a testing population in laboratory. The study of mucous cell and its secretion from the offspring of B. weberi exposed to various salinity levels of water was conducted in a laboratory controlled environment. The main composition of mucus from B. weberi are polysaccharide and protein. The lethal concentration 50% (LC50) of B. weberi was calculated from the TRAP program to be 33% of sea water or 10.25 g salt/kg in this study. The mean number and area of round mucous cells from the paraffin section of B. weberi were significantly greater in the 30% sea water treatment than those found in 12.5%, 25% sea water and control treatments. However, there is no significant difference of mean number and area of pear shaped secretory mucous cells among the salinity treatments. The results of this study indicated that round mucous cells secrete more mucus to help the B. weberi adapt to environment with low salinity water. The pear shaped secretory mucous cells secrete acid mucus to control the bacteria infection, therefore, there is no response of the pear shaped mucous cell in terms of mean number and area to the salinity change in water. Two different functions of the mucous cell of B. weberi may account for the adaptation of B. weberi in the low and medium levels of pollution water in the river. The adaptation trait may help B. weberi to be a successful exotic in Europe and United States.

Topic Category 生命科學院 > 生命科學系所
生物農學 > 生物科學
  1. 王淑姿,彭宗仁,汪中和。2001。台灣中部主要河川水質之鹽化狀況及其灌溉適用性評估。農林學報 50:39-53。
  2. 行政院環境保護署。2013。生物急毒性檢測法─水蚤靜水式法 (NIEA B901.14B)。
  3. 李俊賢。2006。以三維數值模式模擬淡水河河口及感潮段鹽度與懸浮沉積物。國立中央大學碩士論文。107頁。
  4. 林聖淇,張尊國。2015。畜牧廢水中陰陽離子濃度組成及其導電度之關聯性探討。農業工程學報 61。
  5. 施盈哲。2014。臺中市旱溪巴蛭之族群與生態環境探討。國立中興大學碩士論文。76頁。
  6. 張喬雅。2017。台中旱溪巴蛭的繁殖及在不同污染水域中表皮黏液細胞面積大小及顆數的反應。國立中興大學碩士論文。64頁。
  7. 蔡明華。1986。水污染對灌溉農業之影響。農田水利雜誌 33:30-35。
  8. Kerkut, G. A. 1962. International Series of Monographs on Pure and Applied Biology. U.S.A.: Marine Biological Laboratory Library.
  9. Lai Y. D., and J. H. Chen. 2010. Leech Fauna of Taiwan. National Taiwan University. Taipei, Taiwan.
  10. WHO (World Health Organization). 2011. Guidelines for drinking-water quality. WHO. Switzerland.
  11. Balance, S., M. Howard, K. N. White, C. R. McCrohan, D. J. Thornton, and J. K. Sheehan. 2004. Partial characterisation of high-molecular weight glycoconjugates in the trail mucus of the freshwater pond snail Lymnaea stagnalis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 137:475-486.
  12. Beninger, P. G., S. St-Jean,Y. Poussart, and J. E. Ward. 1993. Gill function and mucocyte distribution in Placopecten magellanicus and Mytilus edulis (Mollusca: Bivalvia): the role of mucus in particle transport. Marine Ecology Progress Series 98:275-282.
  13. Berezina, N. A. 2003. Tolerance of freshwater invertebrates to changes in water salinity. Russian Journal of Ecology 34:261-266.
  14. Coello, W. F., and A. Q. Khan. 1996. Protection against heavy metal toxicity by mucus and scales in fish. Archives of Environmental Contamination and Toxicology 30:319-326.
  15. Cottrell, J. M., I. F. Henderson, J. A. Pickett, and D. J. Wright. 1993. Evidence for glycosaminoglycans as a major component of trail mucus from the terrestrial slug, Arion ater L. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 104:455-468.
  16. de Oliveira David, J. A., and C. S. Fontanetti. 2009. The role of mucus in Mytella falcata (Orbigny 1842) gills. Water Air Soil Pollution 203:261-266.
  17. Deyrup-Olsen, I., D. L. Luchtel ,and A. W. Martin. 1983. Components of mucus of terrestrial slugs (Gastropoda). American Journal of Physiology 245:448-452.
  18. Giangrande, A., M. Licciano, R. Schirosi, L. Musco, and L. Stabili. 2014. Chemical and structural defensive external strategies in six sabellid worms (Annelida). Marine Ecology 35:36-45.
  19. Goss, K. F. 2003. Environmental flows, river salinity and biodiversity conservation: managing trade-offs in the Murray–Darling basin. Australian Journal of Botany 51:619 – 625.
  20. Iguchi S. M. M., T. Aikawa, and J. Matsumoto. 1982. Antibacterial activity of snail mucus mucin. Comparative Biochemistry and Physiology Part A: Physiology 72:571-574.
  21. Kruatrachue, M., C. Sumritdee, P. Pokethitiyook, and S. Singhakaew. 2011. Histopathological effects of contaminated sediments on golden apple snail (Pomacea canaliculata, Lamarck 1822). Bulletin of Environmental Contamination and Toxicology 86:610.
  22. Lee, J. Y., C. O. Joe, and K. W. Kang. 1996. Isolation and characterization of epidermal mucus from Hirudo nipponia. Journal of Biochemistry and Molecular Biology 29:248-252.
  23. Masese, F. O., M. Muchiri, and P. O. Raburu. 2009. Macroinvertebrate assemblages as biological indicators of water quality in the Moiben River, Kenya. African Journal of Aquatic Science 34:15-26.
  24. Martins, R. J. E., R. Pardo, and R. A. R. Boaventura. 2004. Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Research 38:693-699.
  25. Molinas, M. and G. Huguet. 1993. Ultrastructure and cytochemistry of secretory cells in the skin of the leech, Dina lineata. Journal of Morphology 216:295-304.
  26. Outridge, P. M., D. D. MacDonald, E. Porter, and I. D. Cuthbert. 1994. An evaluation of the ecological hazards associated with cadmium in the Canadian environment. Environmental Reviews 2:91-107.
  27. Petrauskienė, L. 2003. Water and sediment toxicity assessment by use of behavioural responses of medicinal leeches. Environment International 28:729-736.
  28. Piscart, C., J. C. Moreteau, and J. N. Beisel. 2005. Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia 551:227-236.
  29. Tan, W. H., and L. H. Lim. 1984. The tolerance to and uptake of lead in the green mussel, Perna viridis (L.). Aquaculture 42:317-332.
  30. Thorne, R. ST. J., and W. P. Williams. 1997. The response of benthic macroinvertebrates to pollution in developing countries: a multimetric system of bioassessment. Freshwater Biology 37:671-686.
  31. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7:737-750.
  32. Wicklum, D., D. E. C. Smith, and R. W. Davies. 1997. Mortality, preference, avoidance, and activity of a predatory leech exposed to cadmium. Archives of Environmental Contamination and Toxicology 32:178-183.
  33. Zhong, J., W. Wang, X. Yang, X. Yan, and R. Liu. 2013. A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides 39:1-5.