Title

合成與鑑定多牙希夫鹼鎂、鋅與鋁金屬錯合物: 應用於環酯類開環聚合的研究

Translated Titles

Synthesis and Characterization of Multidentate Schiff Base Magnesium, Zinc and Aluminum Complexes: Application in Ring Opening Polymerization of Cyclic Esters

DOI

10.6845/NCHU.2013.01208

Authors

陳孝禮

Key Words

鋅 ; 鎂 ; 鋁 ; 環酯類 ; 開環聚合反應 ; ring-opening polymerization ; cyclic ester ; Magnesium ; Zinc ; Aluminum

PublicationName

中興大學化學系所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

博士

Advisor

林助傑

Content Language

英文

Chinese Abstract

本篇論文分為四個部分,第一部分為對於綠色生物可降解聚合物以及開環聚合反應進行介紹;而第二部分則是合成了一系列N,N,O-三牙雙酮單亞胺輔助配位基L1-H-L4-H,搭配生物毒性較低的鋅、鎂金屬合成鋅金屬錯合物(1a-3a)以及鎂金屬錯合物(1b-3b),應用於左旋乳酸交酯以及外消旋乳酸交酯的開環聚合反應測試,由結果得知無論是鋅金屬錯合物(1a-3a)或鎂金屬錯合物(1b-3b)對於乳酸交酯單體皆有相當良好的催化活性,並透過動力學實驗得錯合物1b速率決定式 - d[LA]/dt = kp [LA]2[1b]2.34,使用脈沖自旋回響實驗(PGSE) 與單晶繞射實驗結果比對,得知錯合物1b於固相以及液相中以分子半徑分別為6.8埃與7.2埃,可判定出液相中1b以雙核構型存在,綜合動力學以及脈沖自旋回響實驗可順利推導出錯合物1b催化過程反應機構。 第三部分則是合成了一系列N,O-雙牙希夫鹼輔助配位基L1-H-L4-H以及透過氫鍵作用雙酮與金剛胺的L5-H2,螯合二乙基鋅合成錯合物1-5,其中錯合物5在透過單晶繞射鑑定後,得知其配位方式與此系統以及N,N,O-三牙雙酮亞胺在形成金屬錯合物有相當大的差異,並將合成出的錯合物1-5對於外消旋乳酸交酯、己內酯以及丁內酯進行開環聚合反應,其中以錯合物4與5對於各種乳酸交酯及己內酯都有優異的催化活性,而錯合物5更是對文獻中較難催化的丁內酯有相當高的活性表現以及living性質,但對於掌性單體的立體選擇性無論是使用4或5皆無法得到高立體選擇的產物,利用動力學實驗對到4與5的進行研究分別可得到速率決定式為-d[LA]/dt = k [LA][4]1.05與-d[LA]/dt = k [LA][5]1.99,有別於N,N,O-三牙雙酮亞胺,透過變溫核磁共振實驗分析,N,O-雙牙希夫鹼系統在溶液中可觀察到錯合物4與5在溶液中隨著溫度增減產生雙核與單核構型的流變,並且透過此實驗觀察錯合物5卞氧基上的氫由原先單峰(singlet)轉變為兩組雙峰(doublet),說明單核結構隨著溫度降低逐漸轉變,形成雙核結構,此時卞氧基上的單鍵地受到金屬中心幾何結構改變無法自由旋轉使得原本化學環境相同的氫產生差異,並由變溫光譜中得到錯合物5的聚結溫度為-68 oC。 第四部分合成了一系列不同背骨架搭配大立體障礙異丙苯官能基的水楊醛而形成的O,N,N,O-四牙薩倫輔助配位基L1-H2-L6-H2,螯合三甲基鋁得到單核帶有卞氧基錯合物1a-3a以及雙核鋁錯合物4-6,並應用於左旋乳酸交酯進行開環聚合反應,其中錯合物1a-3a以及6對於左消旋乳酸交酯有相當好的催化活性,反應8-12小時後能有高於90%的單體轉換率,其中更以1a-3a對外消旋乳酸交酯皆能有大於94%的立體選擇性最高可達97%,而以3a對外消旋酸交酯開環聚合後得到的產物有著最好的熱穩定性質,熔點可高達207 oC,在動力學研究中得到錯合物1a整體速率決定式為–d[LA]/dt = k[LA]1[1a]1,並透過對聚合物末端的鑑定,可得知反應機構為coordination-insertion,在經過對外消旋以及左旋乳酸交酯的反應速率測試,得知錯合物1a對於立體選擇性的產生是透過chain-end control.

English Abstract

There are four chapters in this thesis. Chapter 1: It concers about the background of green polymers and biodegradable polymers and introduces the side reactions and mechanism of ring opening polymerization. Chapter 2: In this part, a series of N,N,O-tridentate ketimitate ligands are chelated with diethyl zinc and n-butyl magnesium to synthesize zinc complexes (1a-3a) and magnesium complexes (1b-3b), respectively, and these complexes are tested the reactivity of ring opening polymerization of lactides. The results of polymerization show all of complexes (1a-3a and 1b-3b) that have good reactivity to lactides, and obtained polymers have respected molecular weight and narrow polydispersity. After the kinetic study of 1b, the overall rate law could be determined such as - d[LA]/dt = kp [LA]2[1b]2.34. Furthermore, according to the result of x-ray diffraction and PGSE, the molecular radiuses have been calculated and researched. The radius of solid state and in solution is 6.8 A - 7.2A. Through these researchs, we could understand the geometry of catalyst 1b in solution that is dinuclear configuration and the mechanism of polymerization could be assumed successfully by above results. Chapter 3: β-Ketiminate zinc complexes (1-5) can be derived from a series of bidentate ligands that are synthesized by different anilines and amines, and β-ketiminate zinc complexes are used as efficient catalysts in the ring opening polymerization of cyclic ester monomers. The ligands L1H-L3H were reacted with ZnEt2 in a 2:1 molar ratio at 25 oC to give mononuclear complexes (1-3) with two ketiminate ligands [(N,O)2Zn]. The zinc alkoxide complexes 4 and 5 are successfully prepared for bulky β-ketiminate with ZnEt2 in the presence of a stoichiometric amount of benzyl alcohol (BnOH) in toluene at 25 oC to produce dinuclear alkoxide zinc complexes. The solid-state structure of 4 and 5 are characterized by x-ray diffraction to prove the dinuclear structure. The complexes of 1-5 are tested the reactivity in ring opening polymerization in several monomers such as lactides, ε-caprolactone and β-butyrolactone. Especially, the 4 and 5 have brilliant activities, in polymerization lactides under mild reaction condition. Furthermore, a series of kinetic studies have detail researched and defined. All of these complexes were characterized by elemental analysis, and NMR spectroscopy. Chapter 4: A series of salen-type ligands (L1H2-L6H2 ) with sterically bulky cumyl groups have been synthesized. Reacting these ligands with AlMe3 could be yielded the mononuclear aluminum complexes [LnAlMe] (1-3) or dinuclear species [L2Al2Me4] (4-6), respectively. Further reacting [LnAlMe] (1-3) with benzyl alcohol are produced [LnAl(OBn)] (1a-3a), individually. Solid-state structural studies reveal that complexes 1a and 2a are mononuclear; however, complex 6 is a dinuclear species. Aluminum alkoxides 1a-3a are highly stereoselective in the ROP of rac-lactide, producing polylactide (PLA) have 94–97 % enantiomeric selectivity (Pm) at the high conversion. Their high enantioselectivity lead PLA with high Tm (205 °C). The polymerization of L-lactide by these complexes also show good living features with narrow PDI values (Mw /Mn = 1.06-1.25) signaling less or no transesterification, which can be further verified by MALDI-TOF mass spectrometric analysis.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學系所
Reference
  1. 4. Mecking, S. Angew. Chem. Int. Ed. , 2004, 43, 1078.
    連結:
  2. 8. Nomura, N.; Ishii, R.; Yamamoto, Y.; Kondo, T. Chem. Eur. J., 2007, 13, 4433.
    連結:
  3. 10. Chisholm, M. H. Pure Appl. Chem., 2010, 82(8), 1647.
    連結:
  4. 20. Tang, H.-Y.; Chen, H.-Y.; Lin, C.-C. Macromolecules., 2007, 40, 8855.
    連結:
  5. 29. Nomura, N.; Hasegawa, J.; Ishii, R. Macromolecules, 2009, 42, 4907.
    連結:
  6. 31. 陳孝禮, 陳明仁*, "乳酸交酯的不對稱的開環聚合催化反應", 化學, chemistry,
    連結:
  7. 2011, 69, 303.
    連結:
  8. 35. (a) Chmura, A. J.; Davidson, M. G.; Jones, M. G.; Lunn, M. D; Mahon, M. F.; Johnson, A. F.; Khunkamchoo, P.; Roberts, S. L.; Wang, S. S. F. Macromolecules, 2006, 39, 7250. (b) Gregson, C. K. A.; Blackmore, I. J.; Gibson, V. C.; Long, N. J.; Marshall, E. L.; White, A. J. P. Dalton Trans., 2006, 3134.
    連結:
  9. 36. Sauer, A.; Kapelski, A.; Fliedel, C.; Dagorne, S.; Kol, M.; Okuda, J. Dalton Trans., 2013, 42, 9007.
    連結:
  10. 51. Hansen, T. V.; Skattebol, L. Tetrahedron Lett., 2005, 46, 3829.
    連結:
  11. 54. Chen, H.-L.; Dutta, S.; Huang, P.-Y.; Lin, C.-C. Organometallics, 2012, 31, 2016.
    連結:
  12. 1. (a) Gross, R. A.; Kalra, B. Science, 2002, 297, 803. (b) Li, Y. Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia, S. N.; Sailor, M. J. Science, 2003, 299, 2045. (c) Auras, R.; Harte, B.; Selke, S. Macromol. Biosci. , 2004, 4, 835. (d) Naira, L. S.; Laurencin, C. T. Prog. Polym. Sci. , 2007, 32, 762.
  13. 2. Averous, L.; Pollet, E. Environmental Silicate Nanobiocomposites; Springer-Verlag (London)., 2012, Chap. 2, pp. 13.
  14. 3. (a) Athanasiou, K. A.; Niederauer, G. G.; Agrawal, C. M. Biomaterials, 1996, 17, 93. (b) Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W. Nature (London) , 1997, 388, 860. (c) Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater., 2000, 12(23), 1841. (d) Vink, E. T. H.; Rabago, K. R.; Glassner, D. A.; Gruber, P. R. Polymer Degradation and Stability, 2003, 80, 403. (e) M. Cuenoud, P.-E. Bourban, C. J.G. Plummer, J.-A. E. Manson, J. Appl. Polym. Sci., 2011, 121, 2078.
  15. 5. (a) O’Keefe, B. J.; Hillmyer, H. A.; Tolman, W. B. J. Chem. Soc., Dalton Trans., 2001, 2215. (b) Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Chem. Rev., 2004, 104, 6147. (c) Wu, J.; Yu, T. L.; Chen, C. T.; Lin, C. C. Coord. Chem. Rev., 2006, 250, 602. (d) Platel, R. H.; Hodgson, L. M.; Williams, C. K. Polym. Rev., 2008, 48, 11. (e) Stridsberg, K. M.; Ryner, M.; Albertsson, A. C. Adv. Polym. Sci., 2002, 157, 41. (f) Andrew P. D. Chem. Commun., 2008, 6446. (g) Biela, T.; Kowalski, A.; Libiszowski, J.; Duda, A.; Penczek, S. Macromol. Symp., 2006, 240, 47.
  16. 6. (a) Li, S.; McCarthy, S. Biomaterials, 1999, 20, 35. (b) Paakinaho, K.; Ella, V.; Syrjala, S.; Kellomaki, M. Polymer Degradation and Stability, 2009, 94, 438. (c) Nomura, N.; Hasegawa, J.; Ishii, R. Macromolecules, 2009, 42(13), 4907. (d) Shen, C.; Wang, Y.; Li, M.; Hu, D. Journal of Polymer Science Part B: Polymer Physics, 2011, 49, 409. (e) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc., 2002, 124, 1316
  17. 7. (a) Bovey, F. A.; Mirau, P. A. NMR of Polymers. Academic Press: San Diego, 1996. (b) Hocking, P. J.; Marachessault, R. H. Macromolecules, 1995, 28, 6401. (c) Bero, M.; Kasperczyk, J.; Jedlinski, Z. J. Makromol. Chem., 1990, 191, 2287.
  18. 9. Huang, Y.; Hung, W.-C.; Liao, M.-Y.; Tsai, T.-E.; Peng, Y.-L.; Lin, C.-C. J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 2318.
  19. 11. (a) Bhaw-Luximon, A.; Jhurry, D.; Spassky, N.; Pensec, S.; Belleney, J. Polymer, 2001, 42, 9651. (b) Stridsberg, K. M.; Ryner, M.; Albertsson, A. C. Advances in Polymer Science (Springer), 2002, 157, 41. (c) Bourissou, D.; Martin-Vaca, B.; Dumitrescu, A.; Graullier M.; Lacombe, F. Macromolecules, 2005, 38, 9993. (d) Baśko, M.; Kubisa, P. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 7919.
  20. 12. (a) Thomas, C. M. Chem. Soc. Rev., 2010, 39, 165. (b) Ajellal, N. Durieux, G.; Delevoye, L.; Tricot, G.; Dujardin, C.; Thomas,C. M.; Gauvin, R. M. Chem. Commun., 2010, 46, 1032. (c) Reichardt, R.; Vagin, S.; Reithmeier, R.; Ott, A. K.; Rieger, B.; Macromolecules, 2010, 43(22), 9311. (d) Jeffery, B. J.; Whitelaw, E. L.; Garcia-Vivo, D.; Stewart, J. A.; Mahon, M. F.; Davidson, M. G.; Jones, M. D. Chem. Commun., 2011, 47, 12328.
  21. 13. (a) Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S. N. J. Macromol. Sci. Polym. Rev., 2005, 45, 325. (b) Labet,. M.; Thielemans, W. Chem. Soc. Rev., 2009, 38, 3484. (c) Wheaton, C. A.; Hayes, P. G.; Ireland, B. J. Dalton Trans., 2009, 4832. (d) Sutar, A. K.; Maharana, T.; Dutta, S.; Chen,C.T.; Lin, C.C. Chem. Soc. Rev., 2010, 39, 1724. (e) Chisholm, M. H. Pure Appl. Chem., 2010, 82, 1647.
  22. 14. (a) May, P. M.; Linder, P. W.; Williams, D. R. J. Chem. Soc., Dalton Trans., 1977, 588. (b) Herring, W. B.; Leavell, B. S.; Paixao, L. M.; Yoe, J. H. American Journal of Clinical Nutrition, 1960, 8(6), 846. (c) Staiger, M. P.; Pietak, A. M.; Huadmai, J.; Dias, G. Biomaterials, 2006, 27, 1728. (d) Pathak, P.; Kapil, U. Indian Journal of Pediatrics, 2004, 71, 1003. (e) Aggett, P. J.; Harries, J. T. Archives of Disease in Childhood, 1979, 54, 909.
  23. 15. (a) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc., 2001, 123, 3229. (b) Rieth, L.R.; Moore, D.R.; Lobkovsky, E.B.; Coates, G.W. J. Am. Chem. Soc., 2002, 124, 15239.
  24. 16. Chisholm, M. H.; Gallucci, J. C.; Phomphrai, K. Inorg. Chem., 2005, 44, 8004.
  25. 17. O'Keefe, B. J.; Hillmyer, M. A.; Tolman, W. B. J. Am. Chem. Soc., 2003, 125, 11350.
  26. 18. (a) Wider, G.; Dotsch, V.; Wuthrich, K. J. Magn. Reson., 1994, 108A, 255. (b) Valentini, M.;. Pregosin, P. S.; Ruegger, H. Organometallics, 2000, 19, 2551. (c) Stamps, J. P.; Ottink, B.; Visser, J. M.; Duynhoven, J. P. M.; Hulst, R. J. Magn. Reson., 2001, 151, 28. (d) Valentini, M.; Ruegger, H.; Pregosin, P. S. Helvetica Chimica Acta, 2001, 84, 2833. (e) Crimmin, R.; Hill, M. S.; Lachs, J. R.; Mahon, M. F.; Procopiou, P. A. Inorg. Chem., 2009, 48, 4445.
  27. 19. Chen, H.-Y.; Tang, H.-Y.; Lin, C.-C. Macromolecules, 2006, 39, 3745.
  28. 21. (a) Hung, W.-C.; Huang, Y.; Lin, C.-C. J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 6466. (b) Hung, W.-C.; Lin, C.-C. Inorg. Chem., 2009, 48, 728.
  29. 22. Huang, Y.; Hung, W.-C.; Liao, M.-Y.; Tsai, T.-E.; Peng, Y.-L.; Lin, C.-C. J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 2318.
  30. 23. a) Bloembergen, S.; Holden, D. A.; Bluhm, T. L.; Hamer, G. K.; Marchessault, R. H. Macromolecules, 1989, 22, 1656. (b) Zhang, Y.; Gross, R. A.; Lenz, R. W. Macromolecules, 1990, 23, 3206. (c) Wu, B.; Lenz, R. W. Macromolecules, 1998, 31, 3473.
  31. 24. (a) Ajellal, N.; Lyubov, D. M.; Sinenkov, M. A.; Fukin, G. K.;Cherkasov, A. V.; Thomas, C. M.; Carpentier, J. F.; Trifonov, A. A. Chem. Eur. J., 2008, 14, 5440. (b) Grunova, E.; Kirillov, E.; Roisnel, T.; Carpentier, J.F. Organometallics, 2008, 27, 5691.
  32. 25. (a) Kemnitzer, J. E.; McCarthy, S. P.; Gross, R. A. Macromolecules, 1993, 26, 1221. (b) Hori, Y.; Suzuki, M.; Yamaguchi, A.; Nishishita, T. Macromolecules, 1993, 26, 5533. (c) Kricheldorf, H. R.; Eggerstedt, S. Macromolecules, 1997, 30, 5693. (d) Arcana, M.; Giani Beaune, O.; Schue, F.; Amass, W.; Amass, A. Polym. Int., 2000, 49, 1348.
  33. 26. (a) Amgoune, A.; Thomas, C. M.; Ilinca, S.; Roisnel, T.; Carpentier, J.-F. Angew. Chem. Int. Ed., 2006, 45, 2782. (b) Ajellal, N.; Bouyahyi, M.; Amgoune, A.; Thomas, C. M.; Bondon, A.; Pillin, I.; Grohens, Y.; Carpentier, J.-F. Macromolecules, 2009, 42, 987. (c) Kramer, J. W.; Treitler, D. S.; Dunn, E. W.; Castro, P. M.; Roisnel, T. Thomas, C. M.; Coates, G. W. J. Am. Chem. Soc., 2009, 131, 16042. (d) Bouyahyi, M.; Ajellal, N.; Kirillov, E.; Thmos, C. M.; Carpentier, J. F. Chem. Eur. J., 2011, 17, 1872.
  34. 27. (b) Grunova, E.; Roisnel, T.; Carpentier, J. F. J. Chem. Soc. Dalton. Trans., 2009, 9010. (e) Guillaume, C.; Carpentier, J. F.; Guillaume, S. M. Polymer, 2009, 50, 5909. (f) Liu, Y.-C.; Lin, C.-H.; Ko, B.-T.; Ho, R.-M. J. Poly. Sci: Part A, 2010, 48, 5339. (g) Chuang, H.-J.; Chen, H.-L.; Hung, B.-H.; Tsai. T.-E.; Huang, P.-L.; Liao, T.-T.; Lin, C.-C. J. Poly. Sci.: Part A, 2013, 51, 1185.
  35. 28. Aluthge, D. C.; Patrick, B. O.; Mehrkhodavandi, P. Chem. Commun., 2013, 49, 4295.
  36. 30. (a) Ovitt, T. M.; Coates, G. W. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 4686. (b) Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 1316.
  37. 32. (a) Ko, B.-T.; Lin, C.-C. Macromolecules, 1999, 32, 8296. (b) Liu, Y.-C.; Ko, B.-T. Lin, C.-C. Macromolecules, 2001, 34, 6196. (c) Chen, H.-L.; Ko, B.-T.; Huang, B.-H.; Lin, C.-C. Organometallics, 2001, 20, 5076. (d) Chisholm, M. H.; Lin, C.-C.; Gallucci, J. C.; Ko, B.-T. Dalton Trans., 2003, 406. (e) Pang, X.; Du, H.; Chen, X.; Wang, X.; Jing, X. Chem. Eur. J., 2008, 14, 3126 (e) Bouyahyi, M.; Grunova, E.; Marquet, N.; Kirillov, E.; Thomas, C. M.; Roisnel, T.; Carpentier, J. F. Organometallics, 2008, 27, 5815. (f) Tang, Z.; Gibson, V. C. Eur. Polym. J., 2007, 43, 150. (g) Qian, F.; Liu, K.; Ma, H. Dalton Trans., 2010, 39, 8071. (h) Darensbourg, D. J; Karroonnirn, O. Organometallics, 2010, 29, 5627.
  38. 33. Buffet, J. C.; Okuda, J.; Amold, P. L. Inorg. Chem., 2010, 49, 419.
  39. 34. (a) Alaaeddine, A.; Thomas, C. M.; Roisnel, T.; Carpentier, J. F. Organometallic, 2009, 28, 1469. (b) Wang, Q.; Xiang, L.; Song, H.; Zi, G. Jorganchem., 2009, 691. (c) Zhang, F.; Zang, J.; Song, H.; Zi, G. Inoche., 2011, 72.
  40. 37. (a) Hsieh, K.-C.; Lee, W.-Y.; Hsueh, L.-F.; Lee, H. M.; Huang, J.-H. Eur. J. Inorg. Chem., 2006, 2306. (b) Chmura, A. J.; Davidson, M. G.; Frankis, C. J.; Jones, M. D.; Lunn, M. D. Chem. Commun., 2008, 1293. (c) Hancock, S. L.; Mahon, M. F.; Kociok-Kohn, G.; Jones, M. D. Eur. J. Inorg. Chem., 2011, 4596. (d)Liang, L.-C.; Lin, S.-T.; Chien, C.-C.; Chen, M.-T. Dalton Trans., 2013, 42, 9286. (e) Saha, T. K.; Ramkumar, V.; Chakraborty, D. Inorg. Chem., 2011, 50, 2720.
  41. 38. (a) Wisniewski, M.; Borgnea, A. L.; Spassky, N. Macromol. Chem. Phys., 1997, 198, 1227. (b) Bhaw-Luximon, A.; Jhurry, D.; Spassky, N. Polymer Bulletin., 2000, 44, 31.
  42. 39. Spassky, N.; Wisniewski, M.; Pluta, C.; Borgne, A. L.; Macromol. Chem. Phys., 1996, 197, 2627.
  43. 40. (a) Radano, P.; Baker, G. L.; Smith III, M. R. J. Am. Chem. Soc., 2000, 122, 1552. (b) Ovitt, M.; Coates, G. W. J. Am. Chem. Soc., 2002, 124, 1316.
  44. 41. (a) Cameron, P. A.; Jhurry, D.; Gibson, V. C.; White, A. J. P.; Williams, D. J.; Williams, S. Macromol. Rapid. Commun., 1999, 20, 616. (b) Bhaw-Luximon, A.; Jhurry, D.; Spassky, N. Polym. Bull., 2000, 56, 31. (c) Jhurry, D.; Bhaw-Luximon, A.; Spassky, N. Macromol. Symp., 2001, 175, 67.
  45. 42. (a) Nomura, N.; Ishii, R.; Akakura, M.; Aoi, K. J. Am. Chem. Soc., 2002, 124, 5938. (b) Nomura, N. Ishii, R.; Yamamoto, Y.; Kondo, T. Chem. Eur. J., 2007, 13, 4433.
  46. 43. Zhong, Z.; Dijkstra, P, J.; Feijen, J. Angew. Chem. Int. Ed., 2002, 41(23), 4510. (b) Zhong; Z.; Dijkstra; P. J.; Feijen, J. J. Am. Chem. Soc., 2003, 125, 11291.
  47. 44. Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc., 2004, 126, 2688.
  48. 45. (a) Jensen, B.S. Acta. Chem. Scand., 1959, 13, 1668. (b) Holzer, W.; Claramunt, R. M.; Perez-Torralba, M.; Guggi, D.; Brehmer, T. H. J. Org. Chem., 2003, 68, 7943.
  49. 46. Sheldrick, G. M. SHELXTL-Plus, NT Crystallographic System, release 5.1; Bruker Analytical X-ray Systems: Madison, WI, 1998.
  50. 47. The Mn(GPC) is multiplied by a factor of 0.58, giving the actual Mn of polylactide. (a) Baran J.; Duda, A.; Kowalski, A.; Szymanski, R.; Penczek, S. Macromol. Rapid Commun., 1997, 18, 325. (b) Biela, T.; Duda, A.; Penczek, S. Macromol. Symp., 2002, 183, 1. (c) Save, M.; Schappacher, M.; Soum, A. Macromol. Chem. Phys., 2002, 203, 889.
  51. 48. (a) 葉建利2010年碩士論文。(b) 廖姿婷2010年碩士論文。(c) 黃佩玲2010年碩士論文。(d) 陳祖韻2011年碩士論文。(e) Chuang, H.- J.; Chen, H.-L.; Ye, J.-L.; Chen, Z.-Y.; Huang, P.-L.; Liao, T.-T.; Tsai, T.-E.; Lin, C.-C. J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 696. (f) Chuang, H.-J.; Chen, H.-L.; Huang, B.-H;. Tsai, T.-E.; Huang, P.-L.; Liao, T.-T.; Lin, C.-C.; J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 1185.
  52. 49. (a) Kasperczyk, J. E. Macromolecules, 1995, 28, 3937. (b) Coudane, J.; Ustariz-Peyret, C.; Schwach, G.; Vert, M. J. Polym. Sci. Polym. Chem. Ed., 1997, 35, 1651.
  53. 50. (a) Raynaud, J.; Absalon, C.; Gnanou, Y.; Taton, D. J. Am. Chem. Soc., 2009, 131, 3201. (b) Montaudo, G.; Montaudo, M.; Wisniewski, M. Macromolecules, 1996, 29, 6461.
  54. 52. Lennon, I. C.; Gerlach, A.; Fox, M. E.; Meek, G.; Praquin, C. Synthesis, 2005, 19, 3196.
  55. 53. 黃霈穎2012年碩士論文。