Title

常用鋁鎂矽/鋁鋅鎂銅合金熱鍛粗晶問題研究

Translated Titles

On the formation of coarse grains in Al-Mg-Si/Al-Zn-Mg-Cu alloys after hot forging

DOI

10.6845/NCHU.2009.01115

Authors

林章清

Key Words

熱鍛 ; 鋁合金 ; 粗晶 ; hot-forging ; aluminum-alloy ; coarse-grains

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

汪俊延

Content Language

繁體中文

Chinese Abstract

在運輸工業上,因為追求“輕”的極致,不同材料的比強度(Specific Strength)常會被拿來討論,讓鋁合金的應用越來越受到重視。傳統零件成形,不外乎鑄造和鍛造兩大基本領域;由於鍛造強迫材料塑性變形,使材質緻密化、均質化,並獲得優良的抗疲勞性、韌性及耐衝擊性,所以為製程考慮的首選。不幸的,晶粒粗大問題一直困擾鍛造業,造成機械性質和表面處理的不穩定。國內鍛造業還處於試誤法的階段,國外已經有不同的思考模式,想解決此問題。本研究以控制原物料品質和製程中加熱參數的方式,來研究此問題。重心放在6061,6066,7050,三種比較常用的鍛造用鋁合金。先以成分比較/導電率量測/橫切面硬度/金相觀察的方式,來選擇鍛造胚料。接著改變製程參數(胚料溫度/胚料加熱時間/模具溫度/熱處理方法),來觀察機械性質/晶粒大小/導電率變化。本實驗發現,如果要追求較小的晶粒。同樣是鋁鎂矽合金,6061和6066的最佳鍛造溫度便有差異;6066的最佳鍛造條件比6061高約60℃,並不是業界所認為“鍛造預熱溫度越低,最終晶粒越小”。而鋁鋅鎂銅合金的7050,原物料的退火狀態,對最終的晶粒分佈,影響相當大,使用退火完整的材料,可以得到比較細而均勻的晶粒分布,並大幅提升強度,而仍然維持其韌性。在實務上,也可以藉由導電率量測,了解工件的析出狀況,搭配拉伸試驗所得的數據,進一步調整製程參數,得到最終所需的機械性質。

English Abstract

In order to seek for the top-class of “light”, lots of different materials’ “specific strength” is reviewed in the transport industry. So “Aluminum-alloy” applications are keeping growing up. Traditional forming-way are casting and forging. Due to that we can get more uniform structure and better fatigue strength and toughness via forging process, so it has been the first choice of the consideration. Unfortunately, “Coarse-Grains” issue keeps upset the forging industry, cause big problem on mechanical properties and surface-treatment .The forging industry still use “Try and Error” method on this issue, but people in other places have been having some different view points to try to overcome this problem.We try to control raw material quality and forging parameter to study this issue, will focus on 6061, 6066 and 7050. The three most popular forging aluminum alloys. First, we will try do some study about composition-comparison/electrical-conductivity/cross-section hardness/microstructure observation to select the suitable raw material rod. Later, we will change the parameter (billet temperature/billet heating time/tooling temperature/heat-treatment) to see the change about mechanical properties/grain size/electrical conductivity. We found that if we wish to get smaller grain, even both 6061 and 6066 are Al-Mg-Si alloy, the best billet temperature are not the same.6066’s “best point” is 60℃ higher than 6061. It is not like what the proverb say “the lower billet temperature, the smaller grain”. For 7050, annealed status of raw material will be a very important factor for final grain distribution of final forging parts. If we use “good” annealed status raw material, can get smaller and more uniform grain, raise the mechanical properties, and still keep very good toughness. In practical application, we can know precipitation status of forging parts via electrical conductivity, with mechanical properties, via proper adjusting manufacturing parameter, got the proper mechanical properties we need.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. microstructure on mechanical properties of forged 6061 aluminum alloy”, Materials Forum, vol. 28, 2004, pp. 1382-1387
    連結:
  2. [7]W. H. Van Geertruyden, W. Z. Misidlek, P. T. Wang, “Surface grain structure development during indirect extrusion of 6xxx aluminum alloys”, Journal of Materials Science, vol.40, 2005, pp. 3861-3863
    連結:
  3. [9]“Aluminum Extrusion Technology”, ASM International , 2000
    連結:
  4. [13]Evren Tan, Bilgehan OGEL, ”Influence of heat treatment on the mechanical properties of AA6066 alloy”, Turkish J. Eng. Env. Sci. vol. 312, 2007, pp. 53-60
    連結:
  5. [14]Katia Regina Cardoso, Dilermando Nagle, Asuncion Garcia Escorial, Marccla Lieblich, “Effect Of mechanical alloying and Ti addition on solution and ageing treatment of an AA7050 aluminum alloy”, Material Research, vol.10, 2007, pp. 199-203
    連結:
  6. [18]Y. H. Kim , T. K. Ryou, H. J. Choi, B. B. Hwang, “An analysis of the forging process for 6061 aluminum-alloy wheels“ , Journal of Materials Processing Technology I23, 2002, pp. 270-276
    連結:
  7. [19]Alexandre Polozine, Lirio Schaeffer, “Influence of the inaccuracy of thermal conductance coefficient on the weighted-mean temperature calculated for a forged blank”, Journals of Materials Processing Technology I95, 2008, pp.260-266
    連結:
  8. [20]MIL-STD-1537C, “Test method standard for electrical conductivity test for verification of heat treatment of aluminum alloys eddy current method ”, 2002
    連結:
  9. [21]MIL-H-6088F, ”Heat treatment of aluminum alloys”, 1981
    連結:
  10. [22]”Autosigma 3000-electrical conductivity meter”, GE Inspection Technologies, 2005
    連結:
  11. [29]D. Dumont, A. Deschamps, Y. Brechet. “On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy”, Materials Science and Engineering A356, 2003, pp. 326-336
    連結:
  12. [1]黃振賢、呂璞石,金屬材料,文京圖書有限公司,1986
  13. [2]陳文照、曾春風、游信和譯,材料科學與工程導論,高立圖書有限公司(William D. Callister, JR. ”Materials Science And Engineering-An Introduction 6/E”, John Wiley, Inc. 中譯本),2006
  14. [3]向四海、連鴻,“不同鋁合金系列之可鍛性研究”,中國機械工程學會第21屆全國學術研討會論文集,國立中山大學,高雄、台灣,2004/11
  15. [4]N. Hosoda, M. Nakai, T. Eto, “The effect of
  16. [5]Andreas Barth, Patrick Laevers, Arne Mulkers, “Hot and cold formed aluminum alloy”, United States Patent Application Publication, US2005/0095167A1, 2005
  17. [6]Li Bairu, Sun Jianfeng, Chen Hongyu, ”Research on coarse-grained problem of 2618 aluminum alloy in isothermal forming production techniques”, Journals of Heilongjiang Institute of Science &Technology, vol.13, 2003, pp. 25-27
  18. [8]J-A. Saeter, T. Iveland, O. Reoso, “High temperature strength of three 6060 extrusion alloys with different content of alloying elements”, Materials Forum, vol. 28, 2004, pp. 724-729
  19. [10]QQ-A-200/8F, “Aluminum alloy 6061, bar, rod, shapes, tubes and wires, extrude”, 1983
  20. [11]R. F. Muraca, J. S. Whittick, ”Materials data handbook-aluminum alloy 6061 (2nd Edition)”, Western Applied Research & Development, Inc., 1972
  21. [12]QQ-A-200E/GEN, “Aluminum alloy, bar, rod, shapes, structural shapes, tube and wire, extrude: general specification for”, 1980
  22. [15]劉胜胆,張新明,黃振寶,杜予晅,周卓平,“固溶處理對高純7055鋁合
  23. 金組織的影響”,材料熱處理學報,第27卷第3期,2006
  24. [16]黃新昌、陳昌順、王進猷編著,“塑性加工學”,文京圖書有限公司, 1999
  25. [17]V. M. Kevorkijan, ”Production technology and use of aluminum drop
  26. forging components”, Material in Technologije, vol.35, 2001, pp. 191-194
  27. [23]ASTM B247M-90, “Standard specification for aluminum and aluminum-alloy die forgings, hand forgings, and rolled ring forgings(metric)”
  28. [24]劉增豐、林樹均、葉均蔚、李勝隆,“材料工程實驗與原理”,先登出版社,1988
  29. [25]Hui Lu , Puja B. Kadolkar, Teiichi Ando, Craig A. Blue, ”Control of grain size and age hardening in AA2618 forgings processed by rapid infrared radiant heating”, The Minerals, Metals & Materials Socieity, 2004
  30. [26]Gowreesan Vamadevan, Frank Kraft, Puja Kadolkav, Howard Mayer, ”Application of rapid infrared heating for processing of aluminum forgings”, in proceeding of the 25th Forging Industry Technical Conference of the Forging Industry Association and the Forging Industry Educational and Research Foundation, 2004
  31. [27]Robert Kervick, Craig A. Blue ,Puja B. Kadolkar, Teiichi Ando, Hui Lu, Kozo Nakazawa, Howard Mayer, George Mochnai, “Enhancement of Aluminum Alloy Forgings through Rapid Billet Heating”, U. S. Department of Energy, 2006
  32. [28]E.D.Sweet, E. S. Charles, M. J. Couper, “The effect of Fe and Mn content on coarse formation during homogenisation of 6000 Series Alloys”, Materials Forum, vol. 28, 2004, pp. 1198-1202
  33. [30]速聯(SRAM)公司內部材料測試規範:「90-6100-014-XXX:HTT MATL SPEC」
  34. [31]Yoshiya Inagaki, “A high strength aluminum alloy for automobile suspension forgings”, Kobelco Technology Review, no. 27, 2007, pp. 78
  35. [32]吳正德, “6061合金的熱處理特性“, 鋁加工, no. 1, 總第160期, 2005, pp.38-46
  36. [33]顏秀崗譯,材料科學與工程,全華科技圖書股份有限公司(L. H. Van Vlack. ”Elements of Materials Science and Engineering 5/E”, Addison-Wesley Publishing Company中譯本),1986
Times Cited
  1. 陳俊吉(2016)。應用環壓試驗於鋁合金6061晶粒粗化研究。中興大學機械工程學系所學位論文。2016。1-111。