Title

橫錯軋延製程對5052鋁-鎂合金顯微組織及機械性質影響之研究

Translated Titles

Effect of Through-Width Vibration Shear Rolling Process on Microstructure and Mechanical Properties of 5052 Al-Mg Alloy Sheet

DOI

10.6845/NCHU.2009.01149

Authors

謝宗憲

Key Words

大量塑性變形 ; 軋延 ; 5052鋁合金 ; Severs Plastic deformation ; Rolling ; 5052Al-Mg alloy

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

汪俊延

Content Language

繁體中文

Chinese Abstract

在這追求輕量化的時代,選用的材料是必頇質輕且高強韌性。最直接的方法是冺用輕金屬並加工提升強韌性,而提升強韌性最有效的方法是使材料具有Ultra-fine grained ( UFG )結構。但現今SPD製程多無法快速地在低能耗的情況下使“板材”產生UFG結構。故本實驗開發“橫錯軋延製程”期待能解決此問題。經實驗結果可發現橫錯軋延製程後所得板材降伏強度皆比傳統軋延製程所得高,並於條件100℃_5Hz_1mm時得到降伏強度為商用5052_H32鋁合金2倍之板材(369MPa)。測試硬度可發現隨著橫錯軋延之振幅增加其硬度也隨之提高,其所得最高硬度比傳統軋延所得高出72Hv。以TEM觀察橫錯軋延後試片發現其皆存在大量晶粒細化與差排糾結之現象,提升橫錯振幅則有助細晶數量提升。若是對橫錯軋延後各試片退火,可發現150℃退火30分鐘至180分鐘內其強度不變。再提升溫度至200℃退火,強度雖比退火150℃弱但仍於退火30分鐘至180分鐘內維持相近強度而此時延伸率則會隨退火時間增長而提升。冺用TEM與X-ray分析可知不同退火時間下其皆具有相近顯微組織與織構,也由DSC熱分析可知退火溫度小於200℃其對橫錯軋延後試片整體儲存能影響不大。

English Abstract

In an epoch of pursuit of lightweight, materials must be high strength and lightweight. The most direct way was used of light metals and enhanced the strength and toughness. One of the most effective ways to be materials possesses ultra-fine grained (UFG) structure. SPD process in the greater part cannot low power consumption and quickly produced UFG structure metal sheets of nowadays. In this experiment, the development of Through-Width Vibration Shear Rolling (TWVSR) Process looks forward to solve this problem. The experimental results can be found by the Through-Width Vibration Shear Rolling processed the 5052 aluminum sheets' yield strength were high than common rolling process, and when the conditions of 100℃_5Hz_1mm yield strength for the commercial 5052-H32 aluminum alloy sheet of 2-fold. Hardness testing can be found to increase the Through-Width Vibration Shear Rolling Process amplitude also increases the hardness, the obtained maximum hardness from sample more than common rolling process 72 Hv. TEM observation of a rolling samples found there are a large number of grain refinement and dislocation of entangled of the phenomenon, enhance the amplitude will help raise the number of fine-grained grain. After annealing, annealing of 150℃ can be found at 30-180 minutes its yield strength unchanged. Enhance the annealing temperature to 200℃, although intensity than 150 ℃ annealing weak but still in the annealing 30-180 minutes to maintain a similar strength and elongation at this time will increase with the annealing time to upgrade. The use of TEM and X-ray analysis, we can see under different annealing time are with their similar microstructure and texture, Thermal analysis by DSC, we can see less than 200℃ annealing temperature does not trigger and the generation of recrystallization and grain growth.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. 7. Andrzej Rosochowski: Solid State Phenomena Vols. 101-102 (2005) pp. 13-22.
    連結:
  2. 10. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, CIRP Annals – Manufacturing Technology (2008), doi:10.1016/j.cirp.2008.09.005
    連結:
  3. 11. H. Utsunomiya, Y. Saito, H.Suzuki, T. Sakai, Proc. Inst. Mech. Eng. B. 2001, 215, 947.
    連結:
  4. 16. Genki Sakai, Katsuaki Nakamura, Zenji Horita, Terence G. Langdon, Materials Science and Engineering A 406 (2005), pp.268-273.
    連結:
  5. 22. J. Y. Huang, Y. T. Zhu, H. Jiang and T. C. Lowe, Acta mater. 49 (2001), pp. 1497-1505.
    連結:
  6. 24. 卓駿孙,“摩擦攪拌點焊5052鋁合金破壞荷重之韋伯解析”,國立成功大學材料科學與工程學系碩士論文(2007)。
    連結:
  7. 27. Robert E. Reed-Hill, Reza Abbaschian, Physical metallurgy Principles, PWS Publishing Company, pp. 227-271.
    連結:
  8. 29. S. Ferrasse, V. M. Segal, S. R. Kalidindi and F. Alford,”Texture evolution during equal channel angular extrusion, Part I. Effect of route, number of passes and initial texture”, Materials Science and Engineering A368 (2004), pp. 235~244.
    連結:
  9. 30. H-R WenK and P Van Houtte,” Texture and anisotropy”, Rep. Prog. Phys. 67 (2004), pp. 1385 ~ 1389.
    連結:
  10. 32. J. F. Humphrey, M. hetherly, Recrystallization and Related Annealing phenomena, Pergamon, (1995) p. 45.
    連結:
  11. 1. G. Cole, A. Glove, R. Jeryan, G. Davies, Steel World 2 (1) (1997) 75-83.
  12. 2. A. Morita. Aluminum alloys for automobile applications, in: Proc. of ICAA-6. Toyohashi, Japan, 5-10 July 1998, in: Aluminum Alloys, vol. 1. 1998, pp. 25-32.
  13. 3. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Materials Science and Engineering A280 (2000), pp. 37-49.
  14. 4. 劉文海,鍛造,第十三卷第三期,93年(2004)10月,pp.1~2。
  15. 5. 劉文海,鍛造,第十二卷第二期,92年(2003)7月,pp.1~2。
  16. 6. 劉文海,鍛造,第十五卷第二期,95年(2006)7月,pp.1~5。
  17. 8. V.M. Segal, USSR: Pat. No. 575892, 1977.
  18. 9. Nobuhiro Tsuji, Yoshihiro Saito, Seong-Hee Lee, and Yoritoshi Minamino, Advanced Engineering Materials 2003, 5, No.5, pp. 338-344.
  19. 12. T.L. Tsai, P.L. Sun, P.W. Kao, C.P. Chang, Materials Science and Engineering A342 (2003), pp. 144-151.
  20. 13. J.C. Lee, H. K. Seok, J. Y. Suh, Acta Mater. 2002, 50,4005.
  21. 14. A. P. Zhilyaev, G. V. Nurislamova, B. -K. Kim, M. D. Baró, J. A. Szpunar and T. G. Langdon, Acta Materialia, 51 (2003), pp. 753-765.
  22. 15. T. Hebesberger, H.P. Stüwe, A. Vorhauer, F. Wetscher and R. Pippan, Acta Materialia, 53 (2005), pp. 393-402.
  23. 17. M. Richert, H.P. Stüwe, M.J. Zehetbauer, J. Richert, R. Pippan, Ch. Motz, E. Schafler, Materials Science and Engineering A355 (2003), pp. 180-185.
  24. 18. A. Rosochowski, R. Rodiet, P. Lipinski: proc. of the 8th Int. Conference Metalforming 2000, Krakow, September, 2000, pp.253.
  25. 19. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong, Scripta Materialia, Vol. 39, No. 9, pp. 1221-1227, 1998.
  26. 20. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Acta mater, Vol. 47, No. 2, pp. 579-583, 1999.
  27. 21. S.H. Lee, Y. Saito, T. Sakai, H. Utsunomiya, Materials Science and Engineering A325 (2002), pp. 228-235.
  28. 23. 黃振賢,金屬熱處理,新文京開發出版社股份有限公司,pp. 476~477。
  29. 25. Robert E. Reed-Hill, Reza Abbaschian, Physical metallurgy Principles, PWS Publishing Company, pp. 168-203.
  30. 26. J.F. Humphreys,“Recrystallization and Recovery, Material Science and Technology, Vol.15, ed. by R. W. Cahn, P. Haasen and E. J. Kramer, VCH, (1991), p.371.
  31. 28. M. Hatherly and W. B. Hutchinson, “An Introduction to Texture in Metal”, Institution of Metallurgist, (1979), p. 6
  32. 31. 周詩博,“冷軋鋁箔之再結晶組織與機械性質”,國立中山大學材料科學研究所碩士論文(2002)。
  33. 33. 毛衛民、楊平、陳冷,材料織構分析原理與檢測技術,北京冶金工業出版社,(2008),pp. 34。