Title

環氧樹脂/蒙脫土/二氧化矽奈米複合材料 製備與物性分析

Translated Titles

Preparation and Physical Properties of Epoxy Resin/Montmorillonite/Silica Nanocomposites

DOI

10.6845/NCHU.2009.01156

Authors

楊承鈞

Key Words

環氧樹脂 ; 蒙脫土 ; 二氧化矽 ; epoxy ; montmorillonite ; silica

PublicationName

中興大學化學工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

吳震裕

Content Language

繁體中文

Chinese Abstract

本研究利用胺基矽氧烷改質二氧化矽,並將改質二氧化矽吸附於蒙脫土上(SiO2 : Clay = 4:1與2:1)再分別以Dimethyldistearylammonium chloride (DMDSAC) 與Dodecyltriphenylphosphonium (DTPPB)界面活性劑改質蒙脫土/二氧化矽並與環氧樹脂製備成複材,並且再另外加入含磷阻燃劑 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO)與環氧樹脂製備成複材。由FTIR分析鑑定,發現二氧化矽與胺基矽氧烷鍵結在1114 cm-1 出現Si-O-Si的特徵峰,1564 cm-1出現一級胺的特徵峰,在2858 cm-1、2926 cm-1為C-H的特徵峰。在DSC之部分發現,複材後硬化溫度為150 oC時蒙脫土含量分別為1.2、2.0 wt %其玻璃轉移溫度分別為152.0 oC、150.1 oC,若交聯時提高後硬化溫度至200 oC其玻璃轉移溫度分別為178.0 oC、170.3 oC,因此提高複材後硬化溫度使得蒙脫土內層之環氧樹脂交聯更完全,環氧樹脂流動性減少,造成玻璃轉移溫度的上升。於穿透式電子顯微鏡TEM發現,複材中的蒙脫土被二氧化矽粒子撐開達脫層狀態,蒙脫土含量為0.2 wt %時層間距為30 ~ 40 nm,當蒙脫土含量為1.2 wt %與2.0 wt %時層間距分別為 30 nm與20 nm,加入DOPO阻燃劑後其觀察出複材中蒙脫土排列較為聚集,蒙脫土含量為1.2 wt %與1.9 wt % 時層間距分別為 20 nm與15 nm。於TGA的結果發現複材加入DOPO阻燃劑後於TG %=95時其熱裂解溫度皆下降,800 oC之殘餘量皆提高。在LOI分析部分,純環氧樹脂之LOI為26.3,加入DOPO阻燃劑後其LOI值為28.3,當複材加入蒙脫土/二氧化矽(蒙脫土含量1.9 wt %)其LOI值為32.0,而複材只加入改質蒙脫土(蒙脫土含量1.8 wt %)LOI為30.5,證明複材添加蒙脫土有助於耐燃且加入之二氧化矽能提高蒙脫土在基材中的分散性而更能提高耐燃效果。於DMA分析中,複材中蒙脫土含量為0.2 wt %~2.0 wt %後硬化為150 oC時於35 oC下之動態儲存模數(E’)提高19.2~61.3 %;當後硬化提高200 oC時於35 oC下之動態儲存模數(E’)提高1.8~ 43.5 %。再加入DOPO 阻燃劑後複材蒙脫土含量為0.4 wt %~1.9 wt %於35 oC下之動態儲存模數(E’)提高 8.8~27.4 %。

English Abstract

In this study, the amino propyl trimethoxy silane was used for the surface modification of silica, and the modified silica was adsorbed to surface of clay/silica (SiO2 : Clay = 4:1 and 2:1) and the clay/silica was adsorbed by the surfactant. Also, we used Dimethyldistearylammonium chloride (DMDSAC) and Dodecyltriphenylphosphonium (DTPPB) surfactant to modify clay/silica. Then we prepared the Epoxy/clay/silica nanocomposites and Epoxy/clay/silica/DOPO composites. In FTIR analysis, we found the Si-O-Si bond of silica and amino silane at 1114 cm-1, the N-H absorption peak emerges at 1564 cm-1, and the C-H absorption peak occurs at 2858 cm-1, 2926 cm-1. In DSC analysis, we found the glass transition temperature of nanocomposites were 152.0 oC and 150.1 oC, when the content of clay were 1.2 wt % and 2.0 wt% respectively. When the temperature of post cure in preparing nanocomposites reaches 200 oC, the glass transition temperature of nanocomposites were 178.0 oC and 170.3 oC. Therefore, increasing the temperature of post cure can lead the nanocomposite crosslinked completely and the segmental mobility of epoxy polymer decreased with the consequence of higher glass transition temperatures. In TEM studies, we found the d-spacing of clay galleries were enlarged by silica particles and clay platelets were highly exfoliated. When the clay in nanocomposites reached 0.2 wt %, the d-spacing of clay was 30 ~ 40 nm. When the clay in the nanocomposites reached to 1.2 wt % and 2.0 wt %, the d-spacing of clay was 30 nm and 20 nm, respectively.We found, in the nanocomposites containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) flame retardant, when the content of clay were 1.2 wt % and 1.9 wt %, the clay aggregate more and the d-spacing was 20 and 15 nm respectively. In the analysis of TGA, the thermal decomposition temperature of nanocomposites at TG = 95 % decreases with the increase of DOPO, the char yield is high at 800 oC. In LOI studies, the LOI of pure epoxy is 26.3. When adding the DOPO in the pure epoxy, the LOI is 28.3. The LOI of nanocomposites increases to 32.0 when the clay in the nanocomposites reaches 1.9 wt %. When the amount of clay in the nanocomposites increases to 1.8 wt %, the LOI of nanocomposites is 30.5. It is suggest that nanocomposites with clay can improve the flame retardancy and the in corporation of silica enhances the contact surface area between clay and epoxy resin and hence becomes more flame retardant. In the analysis of DMA, when the post cure temperature of nanocomposites is 150 oC, the E’ value increase from 19.2 % to 61.3 % at 35 oC. When the post cure temperature of nanocomposites is 200 oC, the E’ value increased from 1.8 % to 43.5 % at 35 oC. With the addition of the DOPO in the nanocomposites under the clay content from 0.4 wt % to 1.9 wt %, the E’ value increases from 8.8 % to 27.4 % at 35 oC.

Topic Category 工學院 > 化學工程學系所
工程學 > 化學工業
Reference
  1. 【9】Sun, Y.; Zhang, Z.; Wong, C. P., Journal of Colloid and Interface
    連結:
  2. Science, 292, 436-444 (2005)
    連結:
  3. C.K., Journal of Colloid and Interface Science, 328, 81-91(2008)
    連結:
  4. 1883-1888 (2009)
    連結:
  5. 36, 1616-1625 (2003)
    連結:
  6. 【16】Chen, C.; Curliss, D., Nanotechnology, 14, 643–648 (2003)
    連結:
  7. 192–197 (2007)
    連結:
  8. 【18】Hussain, F.; Chen, J.; Hojjati, M., Materials Science and Engineering
    連結:
  9. A, 445–446 (2007)
    連結:
  10. 【19】F, Carrasco.; P. Pagès., Polymer Degradation and Stability, 93,
    連結:
  11. 1000-1007 (2008)
    連結:
  12. 【20】Wang, C. S.; Lin, H. S., Journal of Polymer Science: Part A: Polymer
    連結:
  13. 【21】Wang, C. S.; Shieh, J. Y., Journal of Applied Polymer Science, 73,
    連結:
  14. 353–361 (1999)
    連結:
  15. Science, 87, 404–411 (2003)
    連結:
  16. 5159–5167(2003)
    連結:
  17. 【26】Chen, W. Y.; Wang, Y. Z.; Chang, F. C., Journal of Polymer
    連結:
  18. 515-522 (2005)
    連結:
  19. Journal of Applied Polymer Science, 91, 1233–1253 (2004)
    連結:
  20. 【30】Wang, W. S.; Chen, H. S.; Wu, Y. W.; Tsai, T. Y.; Chen-Yang, Y. W.
    連結:
  21. Polymer 49 (2008) 4826–4836
    連結:
  22. 2447 (2008)
    連結:
  23. 【32】Fenimore, C. P.; Martin F. J., Candle-Type Test for Flammability of
    連結:
  24. 【1】 漆宗能, 尚文宇, 聚合物/層狀矽酸鹽奈米複合材料,第2~3 頁、第
  25. 127 頁、第317~320 頁, 五南圖書出版公司, (2004), 台北市
  26. 【2】 柯揚船, 聚合物-無機奈米複合材料, 第51~52 頁、第33~99 頁, 五
  27. 南圖書公司, (2004), 台北市
  28. 【3】賴耿陽譯著, 環氧樹脂應用實務, 第1~4 頁, 復漢出版社 (1998),
  29. 台南市
  30. 【4】謝正悅, 林慶炫, 王春山, 非鹵素難燃電子材料-含磷環氧樹脂, 科
  31. 學資訊月刊 ,第28 卷, 第11 期, 第1-2 頁 (2000)
  32. 【5】Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.-M.; Dubois,
  33. Ph., Materials Science and Enginerring R, 63, 100-125 (2009)
  34. 【6】林建中,周宗華, 高分子材料,第203 頁,新文京開發出版有限
  35. 公司, (2005), 台北市
  36. 【7】吳人潔, 複合材料,第7~8 頁, 文京開發出版有限公司, (2004),台
  37. 北縣
  38. 【8】馬振基, 高分子複合材料, 第255 頁, 正中書局 (1988), 台北市
  39. 【10】Vejayakumaran, P.; Rahman, I. A.; Sipaut, C. S.; Ismail, J.; Chee,
  40. 【11】Rahman I. A.; Jafarzadeh M.; Sipaut C. S., Ceramics International, 35
  41. 【12】Becker, O.; Varley, R.; Simon, G., Polymer, 43, 4365-4373 (2002)
  42. 【13】Xu, W. B.; Bao, S. P.; He, P. S., Journal of Applied Polymer Science,
  43. 43, 842–849 (2002)
  44. 【14】Kong, D.; Park, C. E., Chem. Mater. 15, 419-424 (2003)
  45. 【15】Becker, O.; Cheng, Y. B.; Varley, R. J.; Simon, G. P., Marcomlecules
  46. 【17】Wang, K.; Chen, L.; Kotaki, M.; He, C., Composites: Part A, 38,
  47. Chemistry, 37, 3903–3909 (1999)
  48. 【22】Hsiue, G. H.; Liu, Y. L.; TSIAO, J.; Journal of Applied Polymer
  49. Science, 78, 1–7 (2000)
  50. 【23】Wu, C. S.; Liu, Y. L.; Chiu, Y. S., polymer, 43, 4277-4284 (2002)
  51. 【24】Liu, Y. L.; Chiu, C. Y.; Wu, C. S., Journal of Applied Polymer
  52. 【25】Liu, Y. L.; Hsu, C. Y.; Wei W. L.; Jeng, R. J., Polymer, 44,
  53. Research, 11, 109-117 (2004)
  54. 【27】Liu, Y. J.; Chou, C. I., Polymer Degradation and Stability, 90,
  55. 【28】Schäfer, A.; Seibold, S.; Walter, O.; Döring, M., Polymer Degradtion
  56. and Stability, 93, 557-560 (2008)
  57. 【29】Hussain, M.; Varley, R. J.; Mathys, Z.; Cheng, Y. B.; Simon G. P.,
  58. 【31】Dai, C. F.; Li, P. R.; Yeh, J. M., European Polymer Journal, 44, 2439-
  59. Polymers, Modern Plastic, 44, 141-148 (1966)