Translated Titles

Numerical Analysis and Experiment on Wave Transformation of on the Sand Slope Bed





Key Words

砂質斜坡 ; 波浪變形 ; Sand Slope Bed ; Wave Transformation



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本研究旨在以含孔隙介質參數之非定常緩坡程式,解析砂質底床上波浪變形之特性,並以砂質斜坡底床進行水工模型試驗來驗證數值解的正確性,往昔文獻在探討波浪作用於孔隙彈性海床介質的波浪變形時,多假設海床表面為等水深底床,較少對於斜坡海床進行研究,且多以剛性不透水底床為底床條件進行模擬。在本研究中,以砂質底床鋪設其坡度為1/30的水工模型試驗進行分析,在數值解部份探討剛性不透水底床與砂質底床下波浪變形之特性,以及改變底床坡度探討波浪衰減情況。 在數值模擬中發現,砂質底床與剛性不透水底床情況上之波浪減衰特性有明顯的差異,並在底床坡度越緩時,波浪減衰效果越好,然而,在實驗結果中,隨著周期的改變,利用數值模擬與實驗之結果結合後,發現在預測碎波波高的部份,大致上與實驗成果相當吻合,而當周期越大的時候,數值解析較無法準確預測碎波發生的時間,其中,底床孔隙介質之滲透率、剪力模數與相對水深,皆影響著波浪能量的衰減損失。

English Abstract

The literatures discuss the wave transformations which were based on the rigid impermeable bed or the uniform water depth. Actually, a lot of sea beds are porous sandy sloped-bed. So this study analyzed the wave transformation on the sandy bed by using numerical simulation and experiment. It was installed on sandy bed in one thirtieth slope in the experiment. The equation for unconstant mild slop involved porous parameter wave used in the numerical simulation, besides the bed be considered rigid impermeable or porous permeable and different slopes. If the breaking points were put into the numerical simulation for the experiment, the agreement of the wave transformations showed good. In this paper, it was found that the wave energy loss was affected by the permeable rate of the porous bed, shear modulus and relative water depth. It was also found the wave diminished obviously in the milder slope.

Topic Category 工學院 > 土木工程學系所
工程學 > 土木與建築工程
  1. 1.Biot, M. A. (1941) “General theory of three-dimensional consolidation,” Journal of the Applied Physics, Vol. 12, No. 2, pp.155-164.
  2. 3.Cruz, E. C. and Isobe, M. and Watanabe, A. (1997)“Boussinesq equations for wave transformation on porous beds,”Coastal Engineering in Japan, Vol. 30, pp.125-156.
  3. 5.Jeng, D. S. and Lin, Y. S. (1996) “Finite Element Modeling for Water Wave-Soil Interaction,” Soil Dynamics and Earthquake Engineering, 15(5), pp.283-300.
  4. 6.Jeng, D. S. (2001)“Wave dispersion equation in a porous seabed,” Coastal Engineering in Japan, Vol. 28, pp.1585-1599.
  5. 7.Lee, J. F. and Lan, Y. J. (2002) “On wave propagating over poro-elastic seabed” Coastal Engineering in Japan, Vol. 29, pp.931-946.
  6. 9.Putnam, J. A. and M. A. (1949) “Loss of Wave Energy due to Percolation in a Permeable Sea Bottom,” Transactions, American Geophysical Union, Vol. 30, No. 3, pp.349-356.
  7. 10.Raman-Nair, W. and G., C. W. (1991) “Wave-Induced Failure of Pro-Plastic Seabed Slopes,” Proceedings, Institution of Civi Engineeringl, UK, Vol. 91, pp.771-794.
  8. 11.Tsai, C. P. and Lee, T. L.(1995)“Standing wave induced pore pressures in a porous seabed” Coastal Engineering in Japan, Vol. 22, pp.505-517.
  9. 12.Tsai, C. P. and Chen, H. B. and Hsu , J. R. C. (2001) “Calculations of Wave Transformation Across the Surf zone,” Coastal Engineering in Japan, Vol. 28, pp.941-955.
  10. 13.Verruijt, A. (1969) “Elastic storage of aquifers,” Chapter 8 in Flow Through Porous Media (Ed. R. J. M. De Wiest), Academic Press., New York, pp.1827-1846.
  11. 16.蔡清標、陳鴻彬、謝明穎(2007),「斜坡砂質海床上波浪變形之數
  12. 17.許修党(1993),「碎波帶波高分佈之計算模式」,國立中興大學土木工程研究所碩士論文。
  13. 2.Copeland, G. J. M. (1985) “Mile-Slope wave equation,” Coastal Engineering, Vol. 9, pp.125-149.
  14. 4.Hsu, J. R. C., Jeng, D. S. and Tasi, C. P. (1993) “Short-Crested Wave-Induced Soil Response in a Porous Seabed of Infinite Thickness,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 17, No. 8, pp.533-576.
  15. 8.Prevost, J. H., Eide, O. and Haderson, K. H. (1975) “Discussion of Wave Induced Pressure in Permeable Seabeds,” Journal of Waterways, Harbors and Coastal Engergy Division, ASCE, Vol. 101, No. 1, pp.464-465.
  16. 14.林銘崇、丁肇隆、黃遠芳、許朝敏 (2003),「應用Boussinesq方程式模擬透水底床之波浪變形」,中華民國第二十六屆海洋工程研討會論文集,第 34-41頁。
  17. 15.蔡清標、陳鴻彬(2002),「斜坡孔隙彈性介質上波浪變形之研究」,
  18. 中華民國第二十四屆海洋工程研討會論文集,第641-647頁。
  19. 值解析」,中華民國第二十九屆海洋工程研討會論文集,第159-164頁。