Title

原子尺度下二石墨表面層間的摩擦效應

Translated Titles

Atomic-scale friction between two graphite surfaces

DOI

10.6845/NCHU.2011.01342

Authors

張韋誠

Key Words

橫向力顯微鏡 ; 摩擦力 ; 超潤滑 ; LFM ; friction ; superlubricity

PublicationName

中興大學物理學系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

張嘉升

Content Language

繁體中文

English Abstract

In this study, high-resolution friction profiles are obtained using a commercial synchronous atomic/lateral force microscopy(AFM/LFM) associated with a home-made inertial rotational stepper. This rotational positioning system is applied to revolve the measured sample to defined angular direction, and it is comprised of an inertial rotational stepper and a visual angular measurement. The inertial rotational stepper with diameter 30 mm and height 7.6 mm can be easily attached to the AFM-system built in any general optical microscope, through the feedback control, the angular positioning error is less than 0.01 degree, that can be used to comprehend anisotropic surface properties such as surface friction. The sensitivity of lateral force increase when a cantilever was modified by dual-beam forced ion beam (DB-FIB) system with a lateral force resolution down to several pN. We have studied the energy dissipation between a carbon nanotube tip sliding over a graphite surface in dry contact. In the traditional tribology studies, the unknow tip-sample asperity has always been a critical issue. Here we evidently produced an atomically flat closed cap CNT probe to achieve a single asperity, with a well-defined periodic surface, which allows the complete contact on another atomically flat surface. By measuring atomic-scaled friction force as a function of the rotational angle between two contacting graphite layers, we show that the friction force varies due to the commensurate or incommensurate state between a well-defined carbon nanotube tip and a graphite surface. Our results unambiguously demonstrate the “superlubricity” phenomenon at the atomic scale.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
Reference
  1. [2]J. N. Isrelachvili, Intermolecular and Surface Forces, Intermolecular and Surface Forces”, 2nd ed., Academic Press, San Diego, (1992)
    連結:
  2. [3]C. Mathew Mate et al., Phys. Rev. Lett. 59 1942–1945 (1987)
    連結:
  3. [5]Park J Y, Science 313 186 (2006)
    連結:
  4. [6]Socoliuc A, Science 313 207–10 (2006)
    連結:
  5. [10]M. El Mansori, Surf. Coat. Technol., 108-109 479 (1998)
    連結:
  6. [11]S. Fujisawa et al., Nanotechnology, 4 138 (1993)
    連結:
  7. [12]G. A. Tomlinson, Phil. Mag., 7 905 (1929)
    連結:
  8. [13]M. Hirano et al., Phys. Rev. B., 41 11837 (1990)
    連結:
  9. [14]M. Hirano et al., Phys. Rev. Lett., 67 2642 (1991)
    連結:
  10. [15]M. Hirano et al., Phys. Rev. Lett., 78 1448 (1997)
    連結:
  11. [16]J. S. Ko et al., Langmuir, 16 8343 (2000)
    連結:
  12. [17]Dienwiebel M et al., Phys. Rev. Lett., 92 126101 (2004)
    連結:
  13. [18]Robbins M O et al., MRS Bulletin, 23 6 23-26 (1998)
    連結:
  14. [21]陳俊淇, 國家奈米元件實驗室奈米通訊, 15 3 (2008)
    連結:
  15. [22]W. C. Lai et al., Nanotechnology, 21 055702 (2010)
    連結:
  16. [23]J. L. Hutter et al., Rev. Sci. Instrum., 64 7 1868 (1993)
    連結:
  17. [27]Chin S C et al., Nanotechnology, 20 285307 (2009)
    連結:
  18. [30]Dienwiebel M et al., Surf. Sci. 576 197-211 (2005)
    連結:
  19. [31]Akita S et al., Japan. J. Appl. Phys., 39 3724-7 (2000)
    連結:
  20. [1]Bhart Bhushan, Handbook of micro/nano tribology, CRC Press, Boca Raton, (1995)
  21. [4]A. Widom et al., Physical Review B, 34 1403-1404 (1986)
  22. [7]J.Spreadborough, Wear, 5 18 (1962)
  23. [8]G.I. Finch, Proc. Phys. Soc.A, 63 785 (1950)
  24. [9]R.H. Savage, J. Appl. Phys., 27 136 (1956)
  25. [19]胡元中等, 摩擦學學報, 20 4 (2000)
  26. [20]楊志文, 國立臺灣大學理學院物理研究所 博士論文, (2007)
  27. [24]張淵智, 國立雲林科技大學 博士論文, (2004)
  28. [25]張立德, 奈米材料和奈米結構, 滄海書局 (2002)
  29. [26]ILJIN CNT, http://www.iljinnanotech.co.kr/
  30. [28]呂俊頡, 國立清華大學 碩士論文, (2009)
  31. [29]Ruan J A and Bhushan B, J. Appl. Phys., 76 5022-35(1994)