Title

探討氧化層對矽奈米線擴散機制之影響

Translated Titles

The discussion of oxide barrier for silicon nanowire diffusion

Authors

鄭名廷

Key Words

矽化鎳 ; 奈米線 ; 分子動力學 ; NiSi ; nanowire ; MD

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

歐陽浩

Content Language

繁體中文

Chinese Abstract

本研究主要是藉由在In-situ TEM中,在鎳與被氧化層包覆矽奈米線的點接觸式反應中,發現形成矽化鎳結構並非在鎳與矽所接觸的地方,而是在鎳與鎳之間開始形成相變化的現象感興趣,但在實驗上,我們無法精準的觀察氧化層對於鎳與矽奈米線之間究竟扮演什麼腳色;所以,我們利用建構於密度泛函理論的第一原理計算與分子動力學(Molecular dynamics, MD)的方式來探討氧化層對其擴散機制之影響。我們的研究發現,當有氧化層SiO2存在時,鎳在擴散進矽奈米線前會受到氧化層的影響,使鎳原子在氧化層中均勻的擴散開來;當兩個鎳粒子在氧化層中擴散的鎳原子與矽奈米線相碰觸時會在中間形成較高濃度的區域,所以會在鎳粒子中間先開始相變化。另外,在有氧化層與無氧化層的HRTEM中發現所生成的矽化鎳為不同相的結構,這是因為不同的擴散機制,經由不同的動力學路徑(kinetic path)而形成介穩定態的Ni2Si結構。

English Abstract

Using the In-situ transmission electron microscopy (TEM), multiple heterostructures of nickel siliside nanowire was found to be formed by the point-contact reaction. In the case with the existence of surface silicon oxide of silicon nanowire, we observed that phase transition formed between the nickel particle. We interested this phenomenon by adopting the first-principles molecular dynamics (MD) to understand the effect of oxide surface during the diffusion process of nickel particle. Furthermore, different kinetic paths can cause the formation of different phases.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. 1. S. Iijima, “Helical of Microtubules of Graphitic Carbon”, Nature, 354, 56, 1991
    連結:
  2. 2. C. M. Lieber, “One dimensional nanostructures: chemistry, physics,and applications, solid state communications”, Solid State Comm., 107, 607, 1998
    連結:
  3. 3. G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics 38, 56, 1965.
    連結:
  4. 5. L.J. Chen , JOM, 57, 24, 2007
    連結:
  5. 6. Z. Tang , N. A. Kotov, and M. Giersig, “Spontaneous Organization of single CdTe Nanoparticles into Luminescent Nanowires”, Science Vol. 297, 237, 2002
    連結:
  6. 7. T. T. Albrecht, J. Schotter, G. A. Kastle, N.Emley,”Ultrahigh – Density Nanowire Arrays Grown in self-Assembled Diblock Copolymer Templates”,Science Vol.290, 2126, 2000
    連結:
  7. 8. A. Sugawara, T. Coyle, G..G.. Hembree, and M.R.Scheinfein,”Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates”,Appl. Phys. Lett. 70, 1043-1045(2001).
    連結:
  8. 12. Y. Xia, and P. Yang, And. Mater. 15, 353, 2003
    連結:
  9. 15. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
    連結:
  10. 19. Metropolis, N. and Ulam, S., J. Amer. Stat. Assoc. 44, 335-341 , 1949
    連結:
  11. 22. R. Car and M. Parrinello, Phys. Rev. Lett 55 (1985) 2471
    連結:
  12. 26. R. W. Smith, G. S. Was, Phys. Rev. 40, 10322 (1989)
    連結:
  13. 29. M. H. Huang , Samuel Mao,2 Henning Feick,3 Haoquan Yan, Yiying Wu,1 Hannes Kind,1 Eicke Weber,3 Richard Russo, Peidong Yang , Science 292, pp.1897, 2001.
    連結:
  14. 3. G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics 38 (1965) 56-59.
    連結:
  15. 6. U. Falke, et al., Phys. Stat. Sol. (a) 162, p. 615, 1997.
    連結:
  16. 7. B.A. Julies, et al., Thin Solid Films, 347, p. 201, 1999.
    連結:
  17. 9. J. Kedzierski, et al., IEDM Tech. Dig., p. 315, 2003.
    連結:
  18. 11. H. Iwai, et al., Microelectronic Engineering 60, p. 157, 2002.
    連結:
  19. 13. T. Ohguro et al., IEEE Tran. Electron Devices, ED-41, p.2305 (1994)
    連結:
  20. 16. E. G. Colgan et. al., Mater. Sci. Eng., R16, p. 43, 1996.
    連結:
  21. 18. K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki, and T. Sugii, IEDM Tech. Dig. (1995) 449-452.
    連結:
  22. 19. R. T. Tung, and F. Schrey, Appl. Phys. Lett. 67 (1995) 2164-2166.
    連結:
  23. 23. R.N. Wang, and J. Y. Feng, J. Phys. Condens. Matter 15 (2003) 1935-1942.
    連結:
  24. 27. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 1964, 4, 89
    連結:
  25. 28. A. M. Morales and C. M. Lieber, Science, 1998, 279, 208
    連結:
  26. 31. E. I. Givargizov ,Journal of Crystal Growth, Volume 31 20 1975
    連結:
  27. 34. Y. Xia, and P. Yang, And. Mater. 15, 353, 2003
    連結:
  28. 37. N. Wang, Y H Tang, Y F Zhang et al. Phys. Rev B., 1998, 58: R16024~16026
    連結:
  29. 40. 楊裕雄、蕭程允, 奈米線場效電晶體生物感測器之應用 2007
    連結:
  30. 45. R. R. HE AND P. D. YANG Nat. Nanotechnol., 2006, 1, 53
    連結:
  31. 48. K. Toman, Acta Crystallogr. 5, 329, (1952).
    連結:
  32. 49. N. Kawasaki, et al., Ultramicroscopy 108, 399,(2007)
    連結:
  33. 50. K. Toman , Acta Cryst. (1951). 4, 462
    連結:
  34. 51. P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Park, Data for Intermetalic Phases, American Society of Metals, Metals 1985.
    連結:
  35. 52. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
    連結:
  36. 53. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
    連結:
  37. 55. The Art of Molecular Dynamics Simulation, D. C. Rapaport
    連結:
  38. 57. D. R. Hamann, M. Schluter, and C. Chiang Phy. Rev. Lett. 43, 1494 (1979)
    連結:
  39. 59. F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961)
    連結:
  40. 60. M. Methfessel, and M. Van Schilfgaarde, Phys. Rev. B, 48, 4937 (1993)
    連結:
  41. 61. G. A. Sai-Halasz, L. Esaki, and W. A. Harrison, Phys. Rev. B 18, 2812 (1978)
    連結:
  42. 62. Charles Kittel, Introduction to Solid State Physics, John Wiley and Sons
    連結:
  43. 65. ASHCROFT/MERMIN, Solid state physics
    連結:
  44. 66. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
    連結:
  45. 69. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)
    連結:
  46. 70. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. Vol45, 566 (1980)
    連結:
  47. 71. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
    連結:
  48. 73. Vladimir I. Anisimov, Jan Zaanen, and Ole K. Andersen, Phys. Rev. B 44, 943 - 954 (1991)
    連結:
  49. 75. D.M. Bylander, L. Kleinman and S. Lee, Phys Rev. B 42, 1394 (1990)
    連結:
  50. 79. P. Pulay, Chem. Phys. Lett. 73, 393 (1980)
    連結:
  51. 80. D. D. Johnson, Phys. Rev. B38, 12 087 (1988)
    連結:
  52. 85. A. D. Becke, J. Chem. Phys. 96, 2155 (1992).
    連結:
  53. 90. C. Filippi, D. J. Singh, and C. Umrigar, Phys. Rev. B 50, 14 947 (1994).
    連結:
  54. 92. M. Levy, Int. J. Quantum Chem. S23, 617 (1989).
    連結:
  55. 93. C. J. Umrigar and X. Gonze, in High Performance Computing and its Application to the Physical Sciences, Proceedings of the Mardi Gras 1993 Conference, edited by D. A. Browne et al. (World Scientific, Singapore, 1993).
    連結:
  56. 94. G. Ortiz, Phys. Rev. B 45, 11 328 (1992).
    連結:
  57. 96. The Art of Molecular Dynamics Simulation, D. C. Rapaport, 2004
    連結:
  58. 99. Allen M. P.;. Tildesley, D. J Computer Simulation of Liquids; Oxford  Science︰ London, 1991
    連結:
  59. 100. Leach “Molecular modelling: principles and applications” Prentice-Hall, 2001
    連結:
  60. 101. Richard A. Lewis and Andrew R. Leach, Journal of Computer-Aided Molecular Design,8,467,1994
    連結:
  61. 107. L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Phys. Rev., Vol. 114, No.3, pp. 687, 1959
    連結:
  62. 110. Spohr, E. J. Mol. Liq. 1995, 64, 91
    連結:
  63. 111. P. E. Blochl, Phy. Rev. B. 50, 17953, 1994
    連結:
  64. 115. L. Verlet., Phys. Rev., 159, 98, 1967
    連結:
  65. 117. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996)
    連結:
  66. 118. D. Vanderbilt, Phys. Rev. B, 41, 7892 (1990)
    連結:
  67. 119. C. G. Bmyden, Math. Comput 19 (155) 577
    連結:
  68. 122. B. Fultz and J. M. Howe: “Transmission Electron Microscopy and Diffractometry of Materials”, Springer 2002
    連結:
  69. 123. Earl J. Kirkland, Advanced computing in electron in electron microscopy (1998) , p133-138
    連結:
  70. 125. R. F. C. Farrow, R. F. Marks, D. Weller, G. R. Harp, T. A.Rabedeau, M. F. Toney, and S. S. P. Parkin, Mater. Sci. Eng. R. 11, 155 (1993).
    連結:
  71. 126. Brown, Robert ,Phil. Mag. 4, 161-173, 1828.
    連結:
  72. 129. Fan GY and Cowley J M. Ultramicroscopy. 17, 345, 1985
    連結:
  73. 131. M. Levy, Int. J. Quantum Chem. S23, 617 (1989).
    連結:
  74. 132. 中興大學材料工程學系碩士論文,砷化鎵晶圓接合界面氧化層及其界面性質之第一原理計算,邱孝豪,民96。
    連結:
  75. 1. R. Killas and R. Gronsky, Ultramicroscopy, 16, 193, 1985
    連結:
  76. 2. R. J. Bell and P. Dean, Phil. Mag. , 25, 1381, 1972
    連結:
  77. 3. K. C. Lu, W. W. Wu, H. W. Wu, C. M. Tanner, J. P. Chang, L. J. Chen, K. N. Tu, Nano Lett. 7, 2389, 2007.
    連結:
  78. 5. R. N. Ghoshtagore, JAP, 40, 4374, 1969
    連結:
  79. 2. Paul W. Leu, Bin Shan, and Kyeongjae Cho, PHYSICAL REVIEW B 73, 195320 2006
    連結:
  80. 3. Michael Rohlfing, Peter Kruger, and Johannes Pollmann , Phys. Rev. B, 48, 17791, 1993
    連結:
  81. 1. The theory of Brillouin zones and electronic states in crystals, H Jones, 1962.
    連結:
  82. 2. J.R.Chelikowsky and M.L.Cohen, Phys.Rev. B, 10, 5095, 1974.
    連結:
  83. 第一章
  84. 4. 科技產業資訊室:晶片的奈米技術導入進程– Intel 之奈米版圖
  85. 9. R. S. Wagner and W. C. Ellis et al. Applied Physics Letter 4 (1964) 5
  86. 10. Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, William E. Buhro, Science, 270, 1791, 1995
  87. 11. D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yang, J. Xu, Z. H. Xi, and S. Q. Feng ,Physica E 9, 305 (2001).
  88. 13. S. T. Lee, N Wang, Y F Zhang et al. MRS Bull. 24, 36, 1999
  89. 14. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992)
  90. 16. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992)
  91. 17. Irving, J. H. and Kirkwood, J. G. , Journal of chemical Physics, Vol.18, pp.817-829(1950)
  92. 18. Alder, B. J. and Wainwright, T. E. , Journal of chemical Physics, Vol.27, p.1208-1209(1957)
  93. 20. Haile, J. M., Molecular dynamics simulation: elementrary methods (A Wiley-interscience publication), John Wiley & Sons, Inc. the United States of American (1992).
  94. 21. Plimpton, S. , Journal of Computational Physics, Vol. 117, p.1-19(1995)
  95. 23. M.P. Teter, M.C. Payne and D.C. Allan, Phys. Rev. B 40, 12255 (1989)
  96. 24. T. Tortilla, T. Fulmshir, T. SLlzLlki, Mater. Tran. 37, 1298 (l996)
  97. 25. Y. Shao, P. C. Clapp, J. A. Rifkin, Metal. Tran. 1477 (1996)
  98. 27. Yi Cui, Qingqiao Wei, Hongkun Park, and Charles M. Lieber , Science Vol. 293, pp. 1289-1292, 2001.
  99. 28. Duan X, Huang Y, Cui Y, Wang J, Lieber CM., Nature 409, pp.66 – 69, 2001.
  100. 第二章
  101. 1. S. M. Prokes and K. L. Wang, Mater. Res. Sci. Bull. 24, 13 (1999).
  102. 2. J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999).
  103. 4. S. Wolf, “Silicon Processing for the VLSI Era: The Submicron MOSFET” , vol. 3, Sunset, CA: Lattice, (1995).
  104. 5. 科技產業資訊室:晶片的奈米技術導入進程– Intel 之奈米版圖
  105. 8. L.J. Chen , JOM, Vol.57, No.9, p24-31,2005
  106. 10. J.P. Lu, et al., Proc. ECS, 1, p. 159, 2004.
  107. 12. VLSI製造技術, 莊達人編著,高立圖書出版 1994
  108. 14. K. Goto, et. al., Japan Society of Applied Physics, 54th Fall Meeting, Abstract, 1993, P.711
  109. 15. K. Goto et. al., IEDM, p. 449, 1995.
  110. 17. I. J. van Gurp and C. Langereis, J. Appl. Phys. 46 (1975) 4301-4307.
  111. 20. F. d'Heurle, S. Petersson, L. Stolt, and B. Strizker, J. Appl. Phys. 53 (1982) 5678-568.
  112. 21. K. Maex, Material Science and Engineering, R11, (1993)
  113. 22. R. T. P. Lee, D. Z. Chi, M. Y. Lai, N. L. Yakovlev, and S. J. Chua, J. Electrochem. Soc. 151 (2004) G642-G647.
  114. 24. W. L. Tan, K. L. Pey, S. Y. M. Chooi, J. H. Ye, and T. Osipowicz, J. Appl. Phys. 91 (2002) 2901-2909.
  115. 25. P. Yang, Y. Wu, and R. Fan, Int. J. Nanoscience, 1, 1, 2002
  116. 26. L.J. Chen, Journal Of Materials Chemistry, 2007, 17, 4639-4643
  117. 29. R. S. Wagner and W. C. Ellis et al. Applied Physics Letter 4 (1964) 5
  118. 30. J. B. Hannon, S. Kodambaka, F. M. Ross and R. M. Tromp, Nature, 2006, 440, 69.
  119. 32. Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, William E. Buhro, Science, 270, 1791, 1995
  120. 33. D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yang, J. Xu, Z. H. Xi, and S. Q. Feng ,Physica E 9, 305 (2001).
  121. 35. M. J. Zheng, L D Zhang, G H Li et al. Appl Phys Lett., , 79: 839. 2001
  122. 36. S. T. Lee, N Wang, Y F Zhang et al. MRS Bull. 1999: 36~42.
  123. 38. Yuan Yao , Fanghua Li , Shuit-Tong Lee, Chemical Physics Letter, 406, 381, 2005
  124. 39. R. Q. Zhang , Y. Lifshitz and S. T.Lee , Adv. Mater. , 15, 635,2003
  125. 41. D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, S. T. Lee, SCIENCE, 299, 1874,2003
  126. 42. Jia-An Yan, Li Yang, and M. Y. Chou, Phys. Rev. B 76, 115319 (2007)
  127. 43. D. Li Y. Wu, P. Kim, L. Shi, P. Yang and A. Majumdar, Appl. Phys. Lett., 2003, 83, 2934
  128. 44. I. Ponomareva, D. Srivastava and M. Menon, Nano Lett., 2007, 7, 1155.
  129. 46. H. W. Wu, C. J. Tsai, and L. J. Chen , APPLIED PHYSICS LETTERS 90, 043121 ,2007
  130. 47. K.N. Tu , G.. Ottavian. ,JAP, 54, 758 (1983)
  131. 54. John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
  132. 56. Xinyuan Zhao, Davide Ceresoli, and David Vanderbilt, Physical Review B 71, 085107 (2005)
  133. 58. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992)
  134. 63. Xinyuan Zhao, Davide Ceresoli, and David Vanderbilt, Physical Review B 71, 085107 (2005)
  135. 64. The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jurgen Furthmuller
  136. 67. S.H. Vosko, J.P.Perdew, and A. H. MacDonald, Phys. Rev. Lett. 35, 1725 (1975).
  137. 68. 江進福, 物理雙月刊, 廿三卷五期, P549-553
  138. 72. Giovanni Onida, Lucia Reining, and Angel Rubio, Review of Modern Physics, vol. 74, 601 (2002
  139. 74. M.P. Teter, M.C. Payne and D.C. Allan, Phys. Rev. B 40, 12255 (1989)
  140. 76. B. Liu, in Report on Workshop "Numerical Algorithms in Chemistry: Algebraic Methods" edited by C. Moler and I. Shavitt (Lawrence Berkley Lab. Univ. of California, 1978), p.49
  141. 77. S. Blugel, PhD Thesis, RWTH Aachen (1988).
  142. 78. D. M. Wood and A. Zunger, J. Phys. A, 1343 (1985)
  143. 81. The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jurgen Furthmuller
  144. 82. John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
  145. 83. J. P. Perdew, in Electronic Structure of Solids ‘91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11
  146. 84. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992); 48, 4978(E) (1993).
  147. 86. E. I. Proynov, E. Ruiz, A. Vela, and D. R. Salahub, Int. J. Quantum Chem. S29, 61 (1995)
  148. 87. B. Hammer, K. W. Jacobsen, and J. K. Norskov, Phys. Rev. Lett. 70, 3971 (1993); B. Hammer and M. Scheffler, Phys. Rev. Lett. 74, 3487 (1995).
  149. 88. D. R. Hamann, Phys. Rev. Lett. 76, 660 (1996); P. H. T. Philipsen, G. te Velde, and E. J. Baerends, Chem. Phys. Lett. 226, 583 (1994).
  150. 89. A. Zupan, J. P. Perdew, K. Burke, and M. Causa, Int. J. Quantum Chem. (to be published).
  151. 91. J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B (to appear).
  152. 95. C. Bowen, G. Sugiyama, and B. J. Alder, Phys. Rev. B 50, 14 838 (1994); S. Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev. Lett. 75, 689 (1995).
  153. 97. 2008第一原理進階課程 MD simulation,張俊明教授
  154. 98. Michael P. Allen, John von Neumann Institute for Computing, NIC Series, Vol. 23, 1, 2004
  155. 102. Irving, J. H. and Kirkwood, J. G. Journal of chemical Physics, Vol.18, pp.817-829(1950)
  156. 103. Alder, B. J. and Wainwright, T. E. , Journal of chemical Physics, Vol.27, 1208-1209(1957).
  157. 104. Metropolis. N., Rosenbluth., A. W., Rosenbluth, M. N., Teller, A. N.and Teller. E., Journal of chemical Physics, Vol.21, No.6, 1087-1092(1953).
  158. 105. Haile, J. M., Molecular dynamics simulation: elementrary methods (A Wiley-interscience publication), John Wiley & Sons, Inc. the United States of American (1992)
  159. 106. J. E. Lennard-Jones, Proc. Roy. Soc. London, 1924
  160. 108. R. A. Johnson, Phys. Rev. B, Vol. 37, pp. 3847-4339, 1987.
  161. 109. V. Rosato, M. Guillope, and B. Legrand, Philosophical Magazine A, Vol. 59, 321-336, 1989
  162. 112. Nose, S. Journal of Chemical Physical 1984, 81, 511
  163. 113. Hoover, W. Physical Review A 1985, 31,1695
  164. 114. Leach, A. R. molecular Modeling: principle and applications; Longman, 1996.
  165. 116. Quentrec, B. and Brot, C. Journal of Computational Physics, Vol.13
  166. 120. In general the Kohn-Sham energy functional for an ultrasoft (US) Vanderbilt pseudopotential (PP) can be written as [25-271]
  167. 121. 林智仁,羅聖全,工業材料雜誌,201期,P.90-98,民92年9月
  168. 124. JEMS software package that is developed by Pierre Stadelmann, http://cimesg1.epfl.ch/CIOL/ems.html
  169. 127. A. Einstein, Ann. d. Phys., 17, 549 (1905)
  170. 128. Cukier, Robert I.; Kapral, Raymond; Lebenhaft, Julian R. J. Chem. Phys. 73, 5244 (1980)
  171. 130. 陳力俊 等著,材料電子顯微鏡學,國科會精儀中心
  172. 第四章
  173. 4. SORAB K. GHANDHI, FRANK L. THIEL, PROCEEDINGS OF THE IEEE, 57, 1484, 1969
  174. 6. Han, Susan and Young, David John, Mat. Res. , 7, 11, 2004.
  175. 7. Yongchang Liu, Qingzhi Shi, Gencang Yang, Yaohe Zhou, Materials Letters , 58, 428, 2004.
  176. 8. MIZUNO MASATAKA, ITSUMI YOSHIO, OGURA TETSUZ, Journal of the Japan Copper and Brass Research Association, 38, 291, 1999
  177. 9. B. Fultz, PRB, 44, 9805, 19
  178. 附錄D
  179. 1. Jia-An Yan, Li Yang, and M. Y. Chou, PHYSICAL REVIEW B 76, 115319 2007
  180. 附錄E
Times Cited
  1. 李承澤(2011)。藉由第一原理分析CoSi(核)/SiO2(殼)、 CrSi2(核)/SiO2(殼) 和FeSi(核)/SiO2(殼)奈米電纜異常的鐵磁性質。清華大學材料科學工程學系學位論文。2011。1-319。 
  2. 韓侑宏(2010)。藉由第一原理分析CrSi2(核)/SiO2(殼)奈米電纜異常的鐵磁性質與氧化鎳薄膜成長研究。清華大學材料科學工程學系學位論文。2010。1-174。