Title

應用兩種鏈黴菌綜合防治南方根瘤線蟲病害與茄科細菌性斑點病之潛力探討

Translated Titles

Studies on the potency of applying two species of Streptomyces with chemicals to control Meloidogyne incognita and Xanthomonas vesicatoria

Authors

黃棨揚

Key Words

鏈黴菌 ; 綜合防治 ; 南方根瘤線蟲 ; 茄科細菌性斑點病 ; Streptomyces ; Integrated pest managemant ; Meloidogyne incognita ; Xanthomonas vesicatoria

PublicationName

中興大學植物病理學系所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

蔡東纂

Content Language

繁體中文

Chinese Abstract

摘要 本研究測試兩種鏈黴菌Streptomyces plicatus B4-7 (以下簡稱B4-7)、S. saraceticus SS31 (以下簡稱SS31)對南方根瘤線蟲、茄科細菌性斑點病的防治機制,並測試兩個鏈黴菌結合化學藥劑後防治病害之潛力。結果發現鏈黴菌B4-7對測試真菌Pytihum aphanidermatum、Rhizoctonia solani AG4 HGII、Sclerotium rolfsii、Fusarium solani Vn4-2與Alternaria brassicicola有較高生長抑制率。而SS31與B4-7皆 可抑制五種細菌病害。將鏈黴菌B4-7、SS31與4種殺線蟲劑、1種殺蟲劑、4種殺菌劑於PSA平版上測試藥劑相容性,結果顯示殺蟲劑與殺線蟲劑無論是同時與鏈黴菌施用或是延後24小時施用,皆不會影響鏈黴菌生長。但四種殺菌劑在同時施用下會對兩種鏈黴菌不等的抑制效果,其中嘉賜銅、氫氧化銅對B4-7有強烈抑制效果,而SS31則會被鏈黴素抑制,但是延後24小時施用藥劑皆可以提升鏈黴菌與測試藥劑之相容性。以1%燕麥、2%米糠、2%黃豆砂糖三種培養液進行生物防治菌增量,發現B4-7燕麥培養液處理根瘤線蟲卵後得到最低卵孵化率47.8%,且最大有效稀釋濃度為30倍。B4-7三種培養液浸泡南方根瘤線蟲二齡幼蟲的處理組比起SS31處理組皆有較多的線蟲失去活性。將二齡線蟲先以稀釋30倍的B4-7培養液浸泡兩天後,再將無活性蟲體移至無菌水中一天,結果顯示二齡線蟲經B4-7黃豆砂糖培養液處理有19.1%死亡率,另有14.5%的J2可在清水中恢復泳動力,表示二齡線蟲經B4-7培養液處理後,蟲體不活化可能為麻痺而非死亡。為了測試由麻痺回復之蟲體是否仍具有侵染能力,將B4-7燕麥培養液處理後之二齡線蟲接種至菜豆根系,五天後進行根系染色,結果顯示二齡線蟲入侵數分別為13.2與15.4隻,與清水處理J2對照組之42.3與37.6隻相比,數目上有顯著差異,在空心菜以B4-7燕麥培養液處理後,可降低土壤內二齡線蟲數與根系上結瘤率。鏈黴菌SS31之黃豆砂糖培養液在雙層NA平板對茄科細菌性斑點病拮抗效果最佳,有最大抑制圈20.10 mm。將帶菌種子以SS31三種基質的培養液分別浸泡30分鐘後,結果顯示鏈黴菌SS31之2%黃豆砂糖與1%燕麥培養液可使種子帶菌率降為0%。於溫室條件下測試化學防治與鏈黴菌之間共同施用的防治效果,發現SS31黃豆砂糖培養液單獨施用處理組得到最低的致病率23.70%與發病嚴重度7.00%,如鏈黴菌與鏈黴素或三元硫酸銅同時施用則會降低防治茄科細菌性斑點病能力。錯開生物防治菌與化學藥劑施用時間,先施用SS31再施用化學藥劑,比起同時施用組其防治效果在統計上顯著較佳。本研究結果顯示鏈黴菌Streptomyces plicatus B4-7、Streptomyces saraceticus SS31具有生物防治潛力,且可與化學藥劑結合使用,未來可導入茄科病害的綜合防治管理策略中。

English Abstract

Abstract Streptomyces plicatus B4-7 and S. saraceticus SS31 were tested for their antagonism ability to several important plant pathogens and assessed the feasibility of combining pesticides applications in the IPM program. The biocontrol mechanism of the tested Streptomyces strains on Southern root-knot nematode (Meloidogyne incognita) and bacterial leaf spot disease (Xanthomonas axonopodis pv vesicatoria) were also studied. Streptomyces plicatus B4-7 had better inhibition on the growth of Pytihum aphanidermatum, Rhizoctonia solani AG4 HGII, Sclerotium rolfsii, Fusarium solani Vn4-2 and Alternaria brassicicola than SS31. Both SS31 and B4-7 had inhibition on the five bacterial pathogens such as Xanthomonas axonopodis pv vesicatoria, X. vesicatoria, X. axonopodis subsp. citri, X. campestris pv. campestris, Acidovorax avenae subsp. citrulli, Pectobacterium carotovorum subsp. carotovorum. Both B4-7 and SS31 strain could not inhibit Acidovorax avenae subsp. citrulli.The two Streptomyces strain were tested with 4 bactericides, 1 insecticide, 4 nematicides for their compatibility. The results showed that insecticide Avermectin and nematicides were compatible with two Streptomyces strains in the in-vitro test. But the four bactericides all inhibited the growth of the 2 biocontrol Streptomyces strains. Copper hydroxide and Kasugamycin-copper oxychloide strongly inhibited B4-7 growth, and Streptomycin inhibited SS31. Postponing the bactericide application 24 hrs could lower the inhibition of four bactercides on Streptomyces B4-7 and SS31. Three media, 1% oatmeal, 2% rice bran, 2% soybean sucrose were used to culture B4-7 and SS31. The egg hatching rate of Southern root-knot nematodes that treated with 30 times dilution B4-7 Oatmeal culture broths had lowest egg hatching rate 47.8%. The J2 of Southern root-knot nematode treated with B4-7 culture broths had higher immobile rates than J2 treated with SS31 broths. When the immobile J2 were moved to sterile water to recover for one day, the results showed that 14.5% immobile J2 could recover in water. To test whether the paralyzed J2 when recovered would have the ability to invade the host, J2 treated with 30X B4-7 oatmeal culture broths were inoculated onto common bean root, and evaluated five days after inoculation. The penetration number of J2 when treated with B4-7 Oatmeal culture broth was 13.2 and 15.4 in 2 experiment, which were significantly different from the blank treatment. S. plicatus B4-7 oatmeal culture broth can control M. incognita on water spinach. Streptomyces SS31 soybean sucrose culture broth had largest inhibit zone 20.1 mm which had the best inhibition on Xanthomonas axonopodis pv.vesicatoria.on double layer NA agar. The seeds coated with Xanthomonas axonopodis pv.vesicatoria. were treated with three culture broths of Streptomyces SS31 for 30 mins, the results indicated that SS31 soybean sucrose and oatmeal culture broths can completely inhibit Xanthomonas axonopodis pv vesicatoria on the contaminated seed. In a greenhouse trail, the single treatment of SS31 soybean sucrose culture broth to control Xanthomonas axonopodis pv vesicatoria on tomato resulted the lowest disease incidence 23.7% and disease severity 7.0%. Appling SS31 culture broth with Streptomycin or Tribasic copper sulfate at the same time resulted higher disease incidence, but postponing pesticides application could improve disease control efficacy. Our studies showed that Streptomyces plicatus B4-7 and Streptomyces saraceticus SS31 were suitable bioagents that might be combined with pesticides application in the integrated pest management of solanaceous crops diseases.

Topic Category 農業暨自然資源學院 > 植物病理學系所
生物農學 > 植物學
Reference
  1. Asaka, O., and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology 62(11): 4081-4085.
  2. Akhtar, M., and Malik, A. L. 2000. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresource Technology 74(1): 35 - 47.
  3. Aghighi, S., Shahidi Bonjar, G. H., and Saadoun, I. 2004. First report of antifungal properties of a new strain of Streptomyces plicatus (strain101) against four Iranian phytopathogenic isolates of Verticillium dahliae, a new horizon in biocontrol agents. Biotechnology (Faisalabad) 3(1): 90-97.
  4. Agrios, G. N. 2005. Plant pathology. 5th ed. Academic Press CA, USA, 922 pp.
  5. Adegboye, M. F., Babalola, O. O. 2012. Taxonomy and ecology of antibiotic producing actinomycetes. African Journal of Agricultural Reseearch 7: 2255-2261.
  6. Bashan, Y., Okon, Y., and Henis, Y. 1982. Long-term survival of Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria in tomato and pepper seeds. Phytopathology 72(9): 1143-1144.
  7. Budge, S. P., and Whipps, J. M. 2001. Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology 91(2): 221-227.
  8. Bibb, M. J. 2005. Regulation of secondary metabolism in Streptomycetes. Current Opinion in Microbiology 8(2): 208-215.
  9. Baker, R., Bragard, C., Candresse, T., and van der Wolf, J. M. 2014. Scientific opinion on the pest categorisation of Xanthomonas campestris pv. vesicatoria (Doidge) Dye. European Food Safety Authority Journal 12(6): 3720-3746.
  10. Condon, J. R., Reith, S. B. M., Nassim, J. R., Millard, F. J. C., Hilb, A., and Stainthorpe, E. M. 1971. Treatment of Paget's disease of bone with mithramycin. British Medical Journal 1(5746): 421–423.
  11. Cook, A. A., and Stall, R. E. 1982. Distribution of races of Xanthomonas vesicatoria pathogenic on pepper. Plant Diseases 66(5): 388-389.
  12. Chen, Y. C. 1992. Biology of Phytophthora capsici and its pathogenicity on solanacearous plants. M.S. thesis, National Chung Husing University, Taichung, Taiwan.70 pp. (In Chinese)
  13. Chen, Z. X., and Dickson, D. W. 1998. Review of Pasteuria penetrans: Biology, ecology, and biological control potential. Journal of Nematology, 30(3):313-340.
  14. Chen, W. H., Cheng, A. H., and Wang, T. C. 1999. Fruit vegetable-tomato. Pp Fruit 4-8 In: Huang, Y. C., Huang, Y. H., Chen, H. Y., Fan, K. H., and Wu, Y. F. (eds). Taiwan agriculture encyclopedia (II). Taiwan Agriculture and Food Agency. Nantou, Taiwan. 429pp. (In Chinese)
  15. Chubachi, K., Furukawa, M., Fukuda, S., Takahashi, S., Matsumura, S., Itagawa, H., Shimizu, T., and Nakagawa, A. 1999. Control of root-knot nematodes by Streptomyces: Screening of root-knot nematode-controlling actinomycetes and evaluation of their usefulness in a pot test. Japanese Journal of Nematology (Japan) 29(2): 42-45.
  16. Cho, M. R., Na, S. Y., & Yiem, M. S. 2000. Biological control of Meloidogyne arenaria by Pasteuria penetrans. Journal of Asia-Pacific Entomology 3(2): 71-76.
  17. Chellemi, D. 2002. Nonchemical management of soilborne pests in fresh market vegetable production systems. Phytopathology 12: 1367-1372.
  18. Chitwood, D. J. 2002. Phytochemical based strategies for nematode control. Annual Review of Phytopathology 40: 221-249.
  19. Challis, G. L., and Hopwood, D. A. 2003. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proceedings of the National Academy of Sciences 100(2): 14555-14561.
  20. Cheng, Y. H., Tsay, T. T., Chung, M. F., and Ni, H. F. 2003. Ocurrence and integrated pest management of plant parasitic nematodes in Taiwan. Special Publication of Taiwan Agricultural Research Institute 106: 151-167. (In Chinese)
  21. Chen, T. Y. 2005. The nonsterile propagation and mode of action of Streptomyces grisebrunneus S3 for controlling disease caused by Pythium aphanidermatum and Rhizoctonia solani AG4. M.S. thesis, National Chung Husing University, Taichung, Taiwan. 109pp. (In Chinese)
  22. Chater, K. F. 2006. Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philosophical Transactions of the Royal Society of London 361:761-768.
  23. Chen, R. S., Lin, Y. Y., Huang, Y. F., and Tsay, J. G. 2006. Fusarium solani f. sp. cucurbitae as a causal agent of crown and foot rot of melon. Plant Protection Bulletin (Taiwan). 48: 31-40. (In Chinese with English abstract)
  24. Cochran, A., Watrin, C., and Ulmer, B. 2007. Review of nematode protection benefits from abamectin seed treatment on corn. Journal of Nematology 39: 78. (Abstract).
  25. Chen, Y. C. 2008. Application of Streptomyces spp. for controlling disease caused by plant pathogenic fungi and plant parasitic nematode. M.S. thesis, National Chung Husing University, Taichung, Taiwan. 70pp. (In Chinese)
  26. Conn, V. M., Walker, A. R., Franco C. M. M. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Molecular Plant-Molecular Interactions 21: 208–218.
  27. Czajkowski, R., Perombelon, M. C., van Veen, J. A., and van der Wolf, J. M. 2011. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathology 60(6): 999-1013.
  28. Cuppels, D. A., Higham, J., and Traquair, J. A. 2013. Efficacy of selected streptomycetes and a streptomycete + pseudomonad combination in the management of selected bacterial and fungal diseases of field tomatoes. Biological Control 67(3): 361-372.
  29. Dulmage, H. T. 1953. The production of neomycin by Streptomyces fradiae in synthetic media. Applied Microbiology 1(2): 103.
  30. Dolak, L. A., and Castle, T. M. 1983. The synthesis of nitrosofungin, a new antibiotic. The Journal of Antibiotics 36(7): 916-917.
  31. Dube, B., and Smart Jr, G. C. 1987. Biological control of Meloidogyne incognita by Paecilomyces lilacinus and Pasteuria penetrans. Journal of Nematology, 19(2): 222-227.
  32. De Meyer, G., and Höfte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87(6): 588-593.
  33. Doimbou, C. L., Salove, M. H., Crawford, D. L., Beaulieu, C. 2001. Actinomyctes, promosing tools to control plant diseases and to promote plant growth. Phytoprotection 82: 85-102.
  34. de Lima Procópio, R. E., da Silva, I. R., Martins, M. K., de Azevedo, J. L., and de Araújo, J. M. 2012. Antibiotics produced by Streptomyces. The Brazilian Journal of Infectious Diseases 16(5): 466-471.
  35. Evans, J. R., and Weare, G. 1977. Norplicacetin, a new antibiotic from Streptomyces plicatus. The Journal of Antibiotics 30(7): 604-606.
  36. Elad, Y., Chet, I., and Katan, J. 1980. Trichoderma harzianum: A biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology 70(2): 119-121.
  37. Elad, Y. 2000. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection 19(8): 709-714.
  38. El-Tarabily, K. A. 2006. Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Botany 84(2): 211-222.
  39. Errakhi, R., Bouteau, F., Lebrihi, A., and Barakate, M. 2007. Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World Journal of Microbiology and Biotechnology 23(11): 1503-1509.
  40. Flaherty, J. E., Somodi, G. C., Jones, J. B., Harbaugh, B. K., and Jackson, L. E. 2000. Control of bacterial spot on tomato in the greenhouse and field with h-mutant bacteriophages. HortScience 35(5): 882-884.
  41. Fei, W. C., Wang, Y. C. 2004. Green book (plant protection manual). Taiwan Agriculture Chemical and Toxic Substance Research Institute Council of Agriculture, Taichung, Taiwan. 835 pp. (In Chinese)
  42. Gottwald, T. R., Graham, J. H., Civerolo, E. L., Barrett, H. C., and Hearn, C. J. 1993. Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determinated by leaf mesophyll susceptibility. Plant Disease 77(10): 1004-1009.
  43. Getha, K., and Vikineswary, S. 2002. Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f. sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. Journal of Industrial Microbiology and Biotechnology 28(6): 303-310.
  44. Graham, J. H., Gottwald, T. R., Cubero, J., and Achor, D. S. 2004. Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Molecular Plant Pathology 5(1): 1-15.
  45. Gong, P., Epton, M. J., Fu, G., Scaife, S., Hiscox, A., Condon, K. C., Condon, G. C., Morrison, N.I., Kelly, D.W., Dafa'alla, T., Coleman, P.G., and Alphey, L. 2005. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nature Biotechnology 23(4): 453-456.
  46. Haskell, T. H., Ryder, A., Frohardt, R. P., Fusari, S. A., Jakubowski, Z. L., and Bartz, Q. R. 1958. The isolation and characterization of three crystalline antibiotics from Streptomyces plicatus. Journal of the American Chemical Society 80(3): 743-747.
  47. Howell, C. R., and Stipanovic, R. D. 1983. Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Canadian Journal of Microbiology 29(3): 321-324.
  48. Hewlett, T. E., Dickson, D. W., Mitchell, D. J., and Kannwischer-Mitchell, M. E. 1988. Evaluation of Paecilomyces lilacinus as a biocontrol agent of Meloidogyne javanica on tobacco. Journal of Nematology 20(4): 578.
  49. Hodgson, D. A. 2000. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Advances in Microbial Physiology 42(C): 47-238.
  50. Huang, T.C., Tseng, K. C., Lu, Y.S. 2007.The identification and detection of Pectobacterium carotovorum subsp. carotovorum. Special Publication of identify important plant health inspection and quarantine disease 6: 109-116. (In Chinese)
  51. Hsun, Y. W., Chou, C. L., Chen, C. J., Chou, M. Y., Chang, H. J., Shen, H. T., and Chung, W. C. 2014. The application of tomato disease resistant gene mark. Agriculture Policy and Review 269: 99-103. (In Chinese)
  52. Igarashi, Y., Ogawa, M., Sato, Y., Saito, N., Yoshida, R., Kunoh, H., Onaka, H., and Furumai, T. 2000. Fistupyrone, a Novel Inhibitor of the Infection of chinese cabbage by Alternaria brassicicola, from Streptomyces sp. TP-A0569. The Journal of Antibiotics 53(10): 1117-1122.
  53. Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E., and Schaad, N. W. 2004. Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology 27(6): 755-762.
  54. Joo G-J, 2005. Production of an anti-fungal substance for biological control of phytophthora capsici causing phytophthora blight in red-peppers by Streptomyces halstedii. Biotechnology Letters 27: 201–5.
  55. Kavitha, R., and Umesha, S. 2007. Prevalence of bacterial spot in tomato fields of Karnataka and effect of biological seed treatment on disease incidence. Crop Protection 26(7): 991-997.
  56. Kuo, C. C. 2010. The introduction of Seed borne diseases on rice. Special Publication of Taichung District Agricultural Research and Extension Station 105: 11 - 17. (In Chinese)
  57. Kuo, C. Y. 2013. Biological control of Alternaria leaf spot on Crucifers by Bacillus subtilis TKS1-1 strain potential application and mode of action. M.S. thesis, National Chung Husing University, Taichung, Taiwan. 77 pp. (In Chinese)
  58. Kuo, C. C., Chen, C. C.,and Chen, W. L. 2015. Applcation of Bacillus amyloliquefaciens to control soilbrone disease among vegetable. Special Publication of Taichung District Agricultural Research and Extension Station 129: 101 - 105. (In Chinese)
  59. Kim, S. S., Kang, S. I., Kim, J. S., Lee, Y. S., Hong, S. H., Naing, K. W., and Kim, K. Y. 2011. Biological control of root-knot nematode by Streptomyces sampsonii KK1024. Korean Journal of Soil Science and Fertilizer 44(6): 1150-1157.
  60. Khalil, E. D. H., Allam, A., and Tag Barakat, A. 2012. Nematicidal activity of some biopesticide agents and microorganisms against root-knot nematode on tomato plants under greenhouse conditions. Journal of Plant Protection Research 52(1): 47-52.
  61. Latunde‐Dada, A. O. 1993. Biological control of southern blight disease of tomato caused by Sclerotium rolfsii with simplified mycelial formulations of Trichoderma koningii. Plant pathology 42(4): 522-529.
  62. Lee, M. D. 1995. Applcation of chitinolytic actinomycetes for controlling southern Root-knot nematode. M.S. thesis, National Chung Husing University, Taichung, Taiwan. 74pp. (In Chinese)
  63. Lewis, W. J., Van Lenteren, J. C., Phatak, S. C., and Tumlinson, J. H. 1997. A total system approach to sustainable pest management. Proceedings of the National Academy of Sciences 94(23): 12243-12248.
  64. Louws, F. J., Wilson, M., Campbell, H. L., Cuppels, D. A., Jones, J. B., Shoemaker, P. B., Sahin, F., and Miller, S. A. 2001. Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Disease 85(5): 481-488.
  65. Lam, K. S., Gustavson, D. R., Pirnik, D. L., Pack, E., Bulanhagui, C., Mamber, S. W., Forenza, S., Stodieck, L. S., and Klaus, D. M. 2002. The effect of space flight on the production of actinomycin D by Streptomyces plicatus. Journal of Industrial Microbiology and Biotechnology 29(6): 299-302.
  66. Lai, W. R. 2003. Development of Streptomyces griseobrunneus S3 as a Bioagent for the Control of Plant Fungal Diseases. M.S. thesis, National Chung Husing University, Taichung, Taiwan. 70pp. (In Chinese)
  67. Lin, C. S., Chen, C. W., Tzeng D. S. 2003. Apply Bacillius and Streptomyces to control bacterial leaf blight. Special Publication of Taichung District Agricultural Research and Extension Station 81:65-77. (In Chinese)
  68. Lin, Y. S., and Deng, T. C. 2005. Diseases of Cucurbit corps. Pages 198-206. In: Huang, B. F. (ed). Taiwan agriculture encyclopedia (II). Harvest Farm magazine. Taipei, Taiwan. 926pp. (In Chinese)
  69. Lamovšek, J., Urek, G., and Trdan, S. 2013. Biological control of root-knot nematodes (Meloidogyne spp.): microbes against the pests. Acta Agriculturae Slovenica 101(2): 263-275.
  70. McKeen, C. D., Reilly, C. C., and Pusey, P. L. 1986. Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology 76(2): 136-139.
  71. Mojtahedi, H., Santo, G. S., Hang, A. N., and Wilson, J. H. 1991. Suppression of root-knot nematode populations with selected rapeseed cultivars as green manure. Journal of Nematology, 23(2), 170.
  72. Mitkowski, N. A., and Abawi, G. S. 2003. Reproductive fitness on lettuce of populations of Meloidogyne hapla from New York State vegetable fields. Nematology 5(1): 77-83.
  73. Meyer, S. L., Zasada, I. A., Tenuta, M., and Roberts, D. P. 2005. Application of a biosolid soil amendment, calcium hydroxide, and Streptomyces for management of root-knot nematode on cantaloupe. HortTechnology 15(3): 635-641.
  74. Monteiro, L., Mariano, R. D. L. R., and Souto-Maior, A. M. 2005. Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Brazilian Archives of Biology and Technology 48(1): 23-29.
  75. Mirik, M., Aysan, Y., and Çinar, Ö. 2008. Biological control of bacterial spot disease of pepper with Bacillus strains. Turkish Journal of Agriculture and Forestry 32(5): 381-390.
  76. Mendoza, A. R., and Sikora, R. A. 2009. Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. BioControl 54(2): 263-272.
  77. Neeno-Eckwall, E. C., Kinkel, L. L., Schottel, J. L. 2001. Competition and antibiosis in the biological control of potato scab. Canadian Journal of Microbiology 47: 332-40.
  78. Obradovic, A., Jones, J. B., Momol, M. T., Balogh, B., and Olson, S. M. 2004. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Disease 88(7): 736-740.
  79. Obradovic, A., Jones, J. B., Momol, M. T., Olson, S. M., Jackson, L. E., Balogh, B., Guven, K., and Iriarte, F. B. 2005. Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Disease 89(7): 712-716.
  80. Omar, I., O'neill, T. M., and Rossall, S. 2006. Biological control of Fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathology 55(1): 92-99.
  81. Pimentel, D., Acquay, H., Biltonen, M., Rice, P., Silva, M., Nelson, J., Lipner, V., Giordano, S., Horowitz, A., and D'amore, M. 1992. Environmental and economic costs of pesticide use. BioScience 42(10): 750-760.
  82. Pattanamahakul, P., and Strange, R. N. 1999. Identification and toxicity of Alternaria brassicicola, the causal agent of dark leaf spot disease of Brassica species grown in Thailand. Plant Pathology 48(6): 749-755.
  83. Postma, J., Willemsen-de Klein, M. J., and van Elsas, J. D. 2000. Effect of the indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown on rock wool. Phytopathology 90(2): 125-133.
  84. Prabavathy, V. R., Mathivanan, N., Murugesan, K. 2006. Control of blast and sheath blight diseases of rice using antifungal metabolites produced by Streptomyces sp. PM5. Biological Control 39: 313-319.
  85. Prapagdee, B., Kuekulvong, C., and Mongkolsuk, S. 2008. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences 4(5): 330-338.
  86. Reifschneider, F., Bongiolo Neto, ⑴., and Takatsu, A. 1985. Reappraisal of Xanthomonas campestris pv. vesicatoria strains-Their terminology and distribution. Fitopatologia Brasileira 10(2): 201-204.
  87. Ritchie, D. F., and Dittapongpitch, V. A. N. L. A. 1991. Copper-and streptomycin-resistant strains and host differentiated races of Xanthomonas campestris pv. vesicatoria in North Carolina. Plant Disease 75(7): 733-736.
  88. Raaijmakers, J. M., and Weller, D. M. 1998. Natural plant protection by 2, 4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Molecular Plant-Microbe Interactions 11(2): 144-152.
  89. Ramamoorthy, V., Raguchander, T., and Samiyappan, R. 2002. Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads. European Journal of Plant Pathology 108(5): 429-441.
  90. Rojo, F. G., Reynoso, M. M., Ferez, M., Chulze, S. N., and Torres, A. M. 2007. Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Protection 26(4): 549-555.
  91. Ruanpanun, P., Laatsch, H., Tangchitsomkid, N., and Lumyong, S. 2011. Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World Journal of Microbiology and Biotechnology 27(6): 1373-1380.
  92. Rajeswari, M., and Ramakrishnan, S. 2015. Influence of Streptomyces fradiae against root knot nematode Meloidogyne incognita in tomato. Research Journal of Agriculture and Forestry Sciences 3(1): 6-11.
  93. Kogan, M. 1998. Integrated pest management: historical perspectives and contemporary developments. Annual review of Entomology 43(1): 243-270.
  94. Kiewnick, S., and Sikora, R. A. 2006. Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biological Control 38(2): 179-187.
  95. Kao, C. H., and Cheng Y. 2007. The application of insect sex pheromone on pest control. Special Publication of Taiwan Agricultural Research Institute.142: 39-56. (In Chinese)
  96. Way, M. J., and Van Emden, H. F. 2000. Integrated pest management in practice—pathways towards successful application. Crop Protection 19(2): 81-103.
  97. Walcott, R. R., Gitaitis, R. D., and Castro, A. C. 2003. Role of blossoms in watermelon seed infestation by Acidovorax avenae subsp. citrulli. Phytopathology 93(5): 528-534.
  98. Stern, V.M., Smith, R.F., Van den Bosch, R., and Hagen, K.S. 1959. The integrated control concept. Hilgardia 29, 81-101.
  99. Smith, R. F. 1974. Origins of integrated control in california, an account of the contributions of charles W.Woodworth. Pan-pacific Entomologist 4: 426–440.
  100. Smith, V. L., Wilcox, W. F., and Harman, G. E. 1990. Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp. Phytopathology 80(9): 880-885.
  101. Schöller, M., Prozell, S., Al-Kirshi, A. G., and Reichmuth, C. 1997. Towards biological control as a major component of integrated pest management in stored product protection. Journal of Stored Products Research 33(1): 81-97.
  102. Shoda, M. 2000. Bacterial control of plant diseases. Journal of Bioscience and Bioengineering 89(6): 515-521.
  103. Samac, D. A., Kinkel, L. L. 2001. Suppression of the root-lesion nematode (Pratylenchus penetrans) in alfalfa (Medicago sativa) by Streptomyces spp. Plant and Soil 235: 35–44.
  104. Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., and Spiegel, Y. 2001. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91(7): 687-693.
  105. Sabaratnam, S., and Traquair, J. A. 2002. Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biological Control 23(3):245-253.
  106. Tseng, K. C., Hsu, S. T. 2004. The identification of important plant disease caused by bacteria. Special Publication of identify important plant health inspection and quarantine disease. II: 95-115. (In Chinese)
  107. Taechowisan, T., Lu, C., Shen, Y., and Lumyong, S. 2005. Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151(5): 1691-1695.
  108. Tseng, T. T. 2015.Development of native Streptomyces as biofungicide. Special Publication of Taichung District Agricultural Research and Extension Station. 127: 1- 8. (In Chinese)
  109. Tseng, T. T. 2015. The application and theory of pesticides-fungicide.1st ed. Yi Hsien Publishing, Taichung, Taiwan. 166pp. (In Chinese)
  110. Tao, K., Fan, J., Shi, G., Zhang, X., Zhao, H., and Hou, T. 2011. In vivo and in vitro antibacterial activity of neomycin against plant pathogenic bacteria. Scientific Research and Essays 6(34): 6829-6834.
  111. Vauterin, L., Hoste, B., Kersters, K., and Swings, J. 1995. Reclassification of Xanthomonas. International Journal of Systematic Bacteriology 45(3): 472-489.
  112. Vijayabharathi, R., Kumari, B. R., Sathya, A., Srinivas, V., Abhishek, R., Sharma, H. C., and Gopalakrishnan, S. 2014. Biological activity of entomopathogenic actinomycetes against lepidopteran insects (Noctuidae: Lepidoptera). Canadian Journal of Plant Science 94(4): 759-769.
  113. Wang, G.Q. 1989. Proceedings of a Symposium of Plant Nematode Diseases Controls. Special Publication of Taiwan Agricultural Research Institute. 25:1-3. (In Chinese)
  114. Wu, Y. F., Chen, S. C., Peng, R. J., Huang, S. H. 2008. The copper resistance of Xanthomonas axonopodis pv. vesicatoria .Special Agriculture Information of Tainan 64: 22-25. (In Chinese)
  115. Yang, P. C., and Yeh, N. H. 1976. Isolation of Organic Antiphytopathogenic Agent. Bulletin of the Institute of Chemistry Academia Sinica 23:48-52.
  116. Zakaria, H. M., Kassab, A. S., Shamseldean, M. M., Oraby, M. M., and El-Mourshedy, M. M. F. 2013. Controlling the root-knot nematode, Meloidogyne incognita in cucumber plants using some soil bioagents and some amendments under simulated field conditions. Annals of Agricultural Sciences 58(1): 77-82.