Title

利用液相層析串聯質譜技術針對中藥材附子之定量分析與品管研究

Translated Titles

Quality control of Chinese medicinal preparations containing Aconitum carmichaeli by LC/ESI (+)/MS3 analysis

DOI

10.6845/NCHU.2008.01229

Authors

李承宇

Key Words

液相層析 ; 質譜 ; 附子 ; 中藥 ; 分析 ; LC ; MS ; Aconitum carmichaeli ; analysis

PublicationName

中興大學化學系所學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

碩士

Advisor

鍾婷婷

Content Language

英文

Chinese Abstract

本篇研究為利用液相層析串聯質譜儀針對中藥材附子 (the lateral roots of Aconitum carmichaeli) 中三個主要生物鹼: 烏頭鹼 (aconitine) 、新烏頭鹼 (mesaconitine) 與次烏頭鹼 (hypaconitine) 做為主要指標成分於三種單方與含有附子之八種複方之甲醇粗萃取物做直接之偵測與定量。最佳化游離條件為使用電灑游離離子源 (ESI) 於正離子模式 (positive-ion mode)下,以動相添加0.005% 三氟醋酸為偵測條件。藉助於三次質譜其CRM模式強大之選擇性可成功排除以二次質譜之SRM模式偵測中藥材複方樣品時所產生之雜訊與干擾以及衍生出之定量誤差問題。 實驗結果指出,烏頭鹼與新烏頭鹼非常容易於中藥材炮製過程中分解,但是對於次烏頭鹼則不然。原因可歸咎於次烏頭鹼因化學結構不同產生之分子特性。有鑑於此,附子單方樣品之炮製與否可以根據其烏頭鹼與新烏頭鹼其含量減少現象來明顯鑑別,但是其含量減少之幅度則根據其炮製方法之不同而有程度上之差異。 本研究中做為指標成分之三個生物鹼,其偵測極限 (LODs) 分別為0.05、0.08與0.03 ng/mL 並且其訊號強度於0.1 至 1000 ng/mL 之濃度範圍內呈現良好之線性。在真實樣品中八個含有附子之複方所偵測到之含量分佈分別為: 烏頭鹼: 84.5 至 2152.3 ng/g、新烏頭鹼: 26.0 至 2984.4 ng/g 以及次烏頭鹼: 1968.3 至 9647.3 ng/g。分析方法對於每個不同樣品僅需要12分鐘即可完成偵測,對於含有複雜組成之傳統中藥複方品管上將可以有廣泛之應用空間。

English Abstract

This research has used LC/ion trap tandem MS analysis to determine aconitine, mesaconitine and hypaconitine as target markers in crude methanol extracts of the lateral roots of Aconitum carmichaeli and three different refining processes treated samples and other eight generally used Traditional Chinese medicine (TCM) preparations containing “Fuzi” (lateral roots of Aconitum carmichaeli) without any clean-up. The optimal ionization characteristics were obtained when using electrospray ionization (ESI) in positive-ion mode with 0.005% TFA as an additive in mobile phase. Based on the extra improved selectivity of consecutive reaction monitoring (CRM) mode we need in this methodology, noise and interference problems that may cause the bias of quantification of Chinese medicinal preparations in selected reaction monitoring (SRM) mode were prevented. The results demonstrated that aconitine and mesaconitine both easily decomposed during refining processes but hypaconitine was kept stable based on its characteristic chemical structure. The treated or un-treated fuzi samples could be distinguished by the detection of the amounts of aconitine and mesaconitine versus of hypaconitine, but still the amounts of aconitine and mesaconitine were vary in treated fuzi with different refining processes. The limits of detection (LODs) were 0.05, 0.08 and 0.03 ng/mL for these three markers. We observed good linearity range from 0.1 to 1000 ng/mL for three marker compounds, respectively. The amount of these alkaloids detected in the eight Chinese medicinal preparations ranged between 84.5 and 2152.3 ng/g for aconitine, 26.0 and 2984.4 ng/g for mesaconitine and between 1968.3 and 9647.3 ng/g for hypaconitine. Our method takes 12 mins per sample and can be used for quality control of Chinese medicinal preparations with complicated composition.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學系所
Reference
  1. [2] R. Kaneko, S. Hattori, S. Furuta, J. Mass. Spectrum. 41 (2006) 810.
    連結:
  2. [3] S.K. Wang, J. Pharm. Biomed. Anal. 30 (2002) 161.
    連結:
  3. [4] H. Ohta, Y. Seto, N. Tsunoda, J. Chromatogr. B 691 (1997) 351
    連結:
  4. [5] K. Ito, S. Tanaka, S. Konno, J. Chromatogr. B 714 (1998) 197
    連結:
  5. [6] Z.H. Wang, J. Wen, J.B. Xing, Y. He, J. Pharm. Biomed. Anal. 40 (2006) 1031.
    連結:
  6. [7] H.T. Feng, L.L. Yuan, S.F.Y. Li, J. Chromatogr. A 1014 (2003) 83.
    連結:
  7. [8] W.X. Sun, S.Y. Liu, Z.Q. Liu, F.G. Song, S.P. Fang, Rapid Commun. Mass Spectrum. 12 (1998) 821.
    連結:
  8. [9] Y. Wang, Z.Q. Liu, F.G. Song, S.Y. Liu, Rapid Commun. Mass Spectrum. 16 (2002) 2075.
    連結:
  9. [14] N. Okamura, H. Miki, H. Orii, J. Pharm. Biomed. Anal. 19 (1999) 603.
    連結:
  10. [1] Z.A. Pan, X.F. Sun, The pharmacopoeia of China, Beijing Chemical Industry Press, Beijing, 2005
  11. [10] Y. Wang, L. Sui, F.G. Song, Z.Q. Liu, S.Y. Liu, Rapid Commun. Mass Spectrum. 17 (2003) 279.
  12. [11] Q.X. Xu, Y. Wang, C.M. Liu, Z.Q. Liu, S.Y. Liu, Anal. Sci. 19 (2003) 1599.
  13. [12] C. Zhao, M. Li, Y.F. Luo, W.K. Wu, Carbonhydrate Research 341 (2006) 485.
  14. [13] Y. chen, S. Koelliker, M. Oehme, A. Kats, J. Nat. Prod. 62 (1999) 701.
  15. [15] M. Hayashida, H. Hayakawa, K. Wada, Legal Medicine 5 (2003) S101.
  16. [16] G.R. Zhuang, The collection of Traditional Chinese Medicinal Preparations, Science and Development Department of Zhuang-song-rong Pharmaceutical, Zhuang-song-rong pharmaceutical, Taichung, 2000
  17. [17] Committee on Chinese Medicine and Pharmacy, Department of Health, Executive Yuan, Taiwan, R.O.C.
  18. [18] LCQTM Manual, Thermo Finnigan MAT, Revision C 1997
  19. [19] Y. Wang, F.R. Song, Z.Q. Liu, Zhongcaoyao 1 (2006) 57
  20. [20] Q.X. Xu, Y. Wang, Z.Q. Liu, Zhongcaoyao 4 (2005) 519
  21. [21] C.T. Kao, K.S. Bi, Zhongcaoyao 10 (2003) 52
  22. [22] X.S. Chen, D.H. Chen, J.Y. Si, Chinese Traditional and Herbal Drugs 31 (2000) 495
  23. [23] S.M. Xu, J. Practical Traditional Chinese Medicine 23 (2007) 391
  24. [24] B.B. Lin, N. Se, H.G. Wang, Chinese J. Exp. Trad. Med. Formulae 12 (2006) 9
  25. [25] Z.Q. Ye, H.Z. Chang, LiShiZhen Med. Materia Med. Res. 17 (2006) 208
  26. [26] H. Yue, Z.F. Pi, Y.F. Zhao, Chinese Journal of Analytical Chemistry 35 (2007) 959
  27. [27] A.J. Xiao, LiShiZhen Med. Materia Med. Res. 18 (2007) 1758
  28. [28] Z.J. Chang, S.H. Wang, Shang-han-lun, Chung Hwa publishing, Beijing, 1991