Title

砂箱實驗模擬基樁裸露動力行為分析與探討

Translated Titles

Study on Dynamic Behavior of Scoured Pile through Sandbox Test

Authors

蔡雨呈

Key Words

模型樁 ; 砂箱 ; 樁土互制 ; 土壤彈簧 ; model pile ; sandbox ; pile-soil interaction ; soil spring

PublicationName

臺北科技大學土木與防災研究所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

宋裕祺

Content Language

繁體中文

Chinese Abstract

臺灣橋梁在颱風豪雨的侵襲下,橋梁基礎裸露的情況時有所聞,再加上台灣位於環太平洋地震帶,地震發生機率頻繁,橋梁隨時都有可能遭受到地震的威脅,而橋梁無論是受洪水或是地震作用其產生的災害,都對橋梁的安全有極大的傷害,本研究為了解基樁在受洪水沖刷後,基樁裸露,若再遭遇地震荷載的雙重作用下,對橋梁安全的疑慮,在目前大多以數值分析軟體模擬橋梁耐洪及耐震能力,但基樁與土壤間互制關係,工程實務上難以模擬,尤其土壤之特性複雜且多變化,是個令工程師頭疼的問題。 本文利用有限元素軟體Midas GTS 建立三維分析模型模擬土壤與基樁間的互制行為,並配合國家地震工程研究中心大型振動台以及翁作新教授等人研發雙軸向多層剪力試驗盒,進行縮尺之橋梁單樁試體振動台試驗,模擬橋梁受沖刷,導致基樁裸露時耐震之行為,並進行實驗與數值分析兩者比對驗證,再以最佳化的方法迴歸出合宜的土壤等值彈簧,希望能透過土壤彈簧的建立可適用於一般結構分析軟體例如SAP2000或MIDAS CIVIL等,以簡化橋梁結構同時受到沖刷及地震多重災害作用下的分析程序,對於提升分析效率應有所助益。

English Abstract

Taiwan located in the southeast Pacific region where earthquake and typhoon occurred frequently. In past decades, the safety and serviceability of the bridges were threatened by either foundation scouring owing to the strict flood or severe seismic disaster. Souring as well known that is the soil erosion near the bridge foundation due to the severe flood. It could lead to the foundation exposure and bridge damage. Furthermore, the bridge dynamic response will be varied owing to the loss of soil lateral support. This could impose additional impact to the bridge and accelerate the occurrence of damage. Hence, the scoured bridge under the seismic excitations must be properly considered and investigated in where the probabilities of having these two hazards are relatively high. However, the structure response under multi-hazard combination and soil structure interaction are quite complicate problems as well as make engineer confused. Therefore, this thesis intends to establish a analytical model which includes the pier, foundation and soil layers by using FEM software firstly. To confirm accuracy, time history analysis result of the FEM model would be compared with the dynamic response measurement of the biaxial laminar shear box shaking table test performed at NCREE. Subsequently, the dynamic analysis results which carried out from the FEM analytical model considering the varying scour depth would be treated as the database. A mathematical process of data fitting well known as the nonlinear regression was used to determine the optimal soil parameters. Finally, the equivalent soil spring to simplify the analysis procedures can be conducted. The proposed soil spring can readily applied by engineers to investigate the dynamic response of the bridge which subjected to multi-hazard events.

Topic Category 工程學院 > 土木與防災研究所
工程學 > 土木與建築工程
工程學 > 市政與環境工程
Reference
  1. [2] C. Jeffrey and J. Lagarias,“Convergence properties of the nelder-mead simplex method in low dimensions,”Siam J. Optim.,Vol.9, No. 1,1998,pp.112-147
    連結:
  2. [3] J.N. Reddy, “An Introduction to the Finite Element Method,” Second edition, USA: McGraw-Hill, 1993.1
    連結:
  3. [4] O.C. Zienkiewicz and R.L. Taylor, “The Finite Element Method - Volume 1:Basic Formulation and Linear Problems,” Fourth edition, UK: McGraw-Hill ,1991.
    連結:
  4. [6] R.D. Cook, D.S. Malkus and M.E. Plesha, “Concepts and Applications of Finite Element Analysis,” Third edition, New York: John Wiley & Sons,1989.
    連結:
  5. [9] U.S. Department of Transportation, FHWA, Hydraulic Engineering Circular No.20, “Bridge Scour and Stream Instability Countermeasures”,2001.
    連結:
  6. [16] 宋裕祺、林正偉、王傳輝,有限元素法在鋼橋局部應力分析之應用與探討,中華技術,第71 期,2006,pp.62~73。
    連結:
  7. [21] 曾永成,飽和砂土中樁基受反覆側向荷重之行為,國立台灣大學土木工程研究所碩士論文,台北,2008
    連結:
  8. [25] 廖南華,土壤經驗參數於數值分析之應用,國立成功大學土木工程研究所碩士論文,台南,2003
    連結:
  9. [1] Breusers, H. N. C. and A. J. Raudkivi, “Scouring”, IAHR, Hydraulic Structure Design Manual, Vol.2, Belkema,1991.
  10. [5] O.C. Zienkiewicz and R.L. Taylor, “The Finite Element Method - Volume 2:Solid and Fluid Mechanics, Dynamics and Non-Linearity,” Fourth edition, UK:McGraw-Hill, 1991.
  11. [7] Richart ,F.E.Hall,J.R.,and,R.D. Woods, “Vibrations of Soils and Fundations”, Englewood Cliffs, 1970.
  12. [8] U.S. Department of Transportation, FHWA, Hydraulic Engineering Circular No.18, “Evaluating Scour at Bridges”,2001.
  13. [10] U.S. Department of Transportation, FHWA, Hydraulic Engineering Circular No.23, “Stream Stability at Highway Structures”,2001.
  14. [11] X.B.Yu. “Real-Time Bridge Scour Monitoring: Recent Technological Development”, Ohio Transportation Engineering Conference, OH, U.S.A ,2007.
  15. [12] Y.L. Chang., Discussion on “Lateral Pile loading Tests”, by Lawrence B. Feagin, Trans ASCE, Paper No. 1959, pp.272-278,1937.
  16. [13] 日本道路協會,道路橋示方書(Ⅰ共通編Ⅳ下部構造編)•同解說,1996。
  17. [14] 王訓濤,周南山,承受側向力之基樁與土壤之互制作用,地工技術,第24期,1988,第39-48頁。
  18. [15] 台灣邁達斯股份有限公司,Midas GTS使用手冊,2008。
  19. [17] 翁作新、王明輝、陳銘鴻、何文欽,「大型振動台剪力盒土壤液化試驗(Ⅰ)-大型二維剪力盒之研發」,國家地震工程研究中心報告,2001,報告編號:NCREE-01-011
  20. [18] 翁作新、陳家漢、彭立先、李偉誠,「大型振動台剪力盒土壤液化試驗(Ⅱ)—大型砂試體之準備與振動台初期試驗」 國家地震工程研究中心報告,2003,報告編號:NCREE-03-042
  21. [19] 翁作新、陳家漢、程漢瑋、吳繼偉,「大型振動台剪力盒土壤液化試驗(Ⅲ)—飽和越南砂試體受振沉陷之探討」 國家地震工程研究中心報告,2006,報告編號:NCREE-03-042
  22. [20] 翁作新、陳家漢、鄒承府、陳益成,「大型振動台剪力盒土壤液化試驗(Ⅳ)—飽和麥寮砂試體受振行為之探討」 國家地震工程研究中心報告,2008,報告編號:NCREE-03-042
  23. [22] 陳逸駿、張吉佐,「基樁側向行為(一)」,現代營建,第19卷,第11期, 1998,第11-18頁。
  24. [23] 張有齡、周南山,「張氏簡易側樁分析法-上篇:靜力部分」,地工技術,第二十五期,1989,第64-82 頁。
  25. [24] 張國鎮、蔡益超、宋裕祺等人「公路橋梁耐震能力評估急補強準則之研究」,國家地震工程研究中心報告,2009,報告編號:NCREE-09-028
Times Cited
  1. 林煒宸(2014)。樁筏基礎受力變形之有限元素分析。淡江大學土木工程學系碩士班學位論文。2014。1-174。 
  2. 王彥誌(2012)。以波動方程和有限元素分析樁基礎受震行為之比較。淡江大學土木工程學系碩士班學位論文。2012。1-178。 
  3. 陳正鴻(2016)。樁基礎沖刷橋梁模型之振動台實驗分析研究。臺灣大學土木工程學研究所學位論文。2016。1-210。 
  4. 董學宜(2013)。砂箱實驗模擬基樁位於乾砂與飽和砂動力行為分析與探討。臺北科技大學土木與防災研究所學位論文。2013。1-316。
  5. 陳竑瑋(2013)。地下隧道受地震作用之結構與土壤互制行為研析。臺北科技大學土木與防災研究所學位論文。2013。1-151。