Title

使用班德氏分解法於最佳無效電力排程

Translated Titles

Using Benders Decomposition on Optimal Reactive Power Scheduling

DOI

10.6841/NTUT.2013.00028

Authors

張益誠

Key Words

電力品質 ; 虛功率與電壓控制 ; 班德氏分解法 ; 內部點法 ; 快速機率性潮流法 ; 平行計算 ; Power Quality ; Reactive Power and Voltage Control ; Benders Decomposition ; Interior Point Method ; Fast Probabilistic Power Flow ; Parallel Computing

PublicationName

臺北科技大學電機工程系所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

陳昭榮

Content Language

繁體中文

Chinese Abstract

穩定的電力品質一直是各國電力公司所追求的目標,除提升發電系統的效率外,如何在電力傳輸的環節上達到電力損失最小,並提供穩定的電壓來源亦是重要課題。近年來風力發電逐漸受到重視,但因其具有不確定之特性,併入電力系統時會產生嚴重的電壓變動問題。而虛功率與電壓的控制正是影響供電品質好壞的最大關鍵因素,若能有效控制虛功率及匯流排電壓,即可改善供電品質,進而降低系統輸電的成本。   本論文提出應用班德氏分解法及內部點法,在滿足所有運轉的限制式情況下,使輸電損失率最小化、變壓器分接頭和並聯電容器組最少操作次數。運用快速機率潮流法求得風力發電造成的電壓變動範圍,將發電機的端電壓、變壓器分接頭設定與並聯電容器組當作控制變數,調整電力系統之電壓大小。另外,本研究亦結合平行計算系統,縮短計算時間,提升求解效率。   本文透過分析模擬IEEE 14-Bus、IEEE 30-Bus、IEEE 57-Bus系統及澎湖電力系統,証實所提方法之可行性,且計算結果較平行基因演算法所得結果為佳。

English Abstract

Stable power quality is always the main goal that the power utility pursues. Besides the increasing of power generation efficiency, the most important topic is how to minimize MW loss and maintain the stable power quality in power system. Recently, wind power generation has been gradually paid attention. Because generation of wind generation is uncertainty, it will cause seriously voltage fluctuated in the power system. The control of reactive power and voltage indeed affects the power quality. Therefore effective reactive power and voltage control scheme can efficiently improve generation quality and reduce transmission cost.   The proposed method based on Benders Decomposition (BD) and Interior Point Method are applied to minimize active power loss rate and minimize the necessary control operation frequency of the transformer tap changers and shunt capacitors under the operational constraints. Fast Probabilistic Power Flow (FPPF) method is used to solve voltage fluctuation resulting form wind farm. The generator voltages, transformer taps, and shunt capacitors are considered to regulate the voltage profile in the power system. In addition, the proposed method is also combined with parallel computing technique to speed up the calculation time and increase the efficiency of solving the problem.   The applicability of proposed method is verified through simulation using IEEE 14-bus system, IEEE 30-bus system, IEEE 57-bus system and Penghu power system. The simulation result obtained by the proposed method is better than that obtained by parallel genetic algorithms.

Topic Category 電資學院 > 電機工程系所
工程學 > 電機工程
Reference
  1. [1] 陳彥豪、陳彥宏與胡桓祥,「各國微電網示範計畫介紹」,台灣經濟研究月刊,第三十三卷,第七期,2010,第103-112頁。
    連結:
  2. [2] Y. Y. Hong and Y. F. Luo, "Optimal VAR Control Considering Wind Farms Using Probabilistic Load-Flow and Gray-Based Genetic Algorithms," IEEE Transactions on Power Delivery, vol. 24, no. 3, 2009, pp. 1441-1449.
    連結:
  3. [3] R. H. Liang and C. K. Cheng, "Dispatch of main transformer ULTC and capacitors in a distribution system," IEEE Transactions on Power Delivery, vol. 16, no. 4, 2001, pp. 625-630.
    連結:
  4. [5] C. T. Su and C. T. Lin, "Fuzzy-based voltage/reactive power scheduling for voltage security improvement and loss reduction," IEEE Transactions on Power Delivery, vol. 16, no. 2, 2001, pp. 319-323.
    連結:
  5. [6] C. H. Liang, C. Y. Chung, K. P. Wong and X. Z. Duan, "Parallel Optimal Reactive Power Flow Based on Cooperative Co-Evolutionary Differential Evolution and Power System Decomposition," IEEE Transactions on Power Delivery, vol. 22, no. 1, 2007, pp. 319-323.
    連結:
  6. [7] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama and Y. Nakanishi, "A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment," IEEE Transactions on Power Systems, vol. 15, no. 4, 2000, pp. 1232-1239.
    連結:
  7. [8] B. Zhao, C. X. Guo and Y. J. Cao, "A multiagent-based particle swarm optimization approach for optimal reactive power dispatch," IEEE Transactions on Power Systems, vol. 20, no. 2, 2005, pp. 1070-1078.
    連結:
  8. [9] A. A. A. Esmin, G. Lambert-Torres and A. C. Zambroni de Souza, "A Hybrid Particle Swarm Optimization Applied to Loss Power Minimization," IEEE Transactions on Power Systems, vol. 20, no. 2, 2005, pp. 859-866.
    連結:
  9. [10] K. Iba, "Reactive Power Optimization by Genetic Algorithm," IEEE Transactions on Power Systems, vol. 9, no. 2, 1994, pp. 685-692.
    連結:
  10. [11] A. J. Urdaneta, J. F. Gomez, E. Sorrentino, L. Flores and R. Diaz, "A Hybrid Genetic Algorithm for Optimal Reactive Power Planning Based Upon Successive Linear Programming," IEEE Transactions on Power Systems, vol. 14, no. 4, 1999, pp. 1292-1298.
    連結:
  11. [12] W. Yan, F. Liu, C. Y. Chung and K. P. Wong, "A Hybrid Genetic Algorithm -Interior Point Method for Optimal Reactive Power Flow," IEEE Transactions on Power Systems, vol. 21, no. 3, 2006, pp. 1163-1169.
    連結:
  12. [13] R. H. Liang and C. K. Cheng, "Dispatch of Main Transformer ULTC and Capacitors in a Distribution System," IEEE Transactions on Power Delivery, vol. 16, no. 4, 2001, pp. 625-630.
    連結:
  13. [14] Y. Y. Hsu and F. C. Lu, "Reactive power/voltage control in a distribution substation using dynamic programming," IEE Proceedings-Generation Transmission and Distribution, vol.142, no. 6, 1995, pp. 639-645.
    連結:
  14. [15] F. C. Lu and Y. Y. Hsu, "Fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation," IEEE Transactions on Power System, vol. 12, no. 2, 1997, pp. 681-688.
    連結:
  15. [16] S. S. Sachdeva, "Transformer Tap Setting and System Voltage Raise Impact on Optimum Planning of Static Capacitors," IEEE Transactions on Power Apparatus and Systems, vol. PAS-103, no. 5, 1984, pp. 1024-1032.
    連結:
  16. [17] G. Celli, E. Ghiani, M. Loddo and F. Pilo, "Voltage Profile Optimization with Distributed Generation," IEEE PowerTech'2005, St. Petersburg, Russia, June 27-30, 2005.
    連結:
  17. [18] G. Coath, M. AI - Dabbagh and S. K. Halgamuge, "Particle Swarm Optimisation for Reactive Power and Voltage Control with Grid - Integrated Wind Farms," IEEE Power Engineering Society General Meeting, vol. 1, no. 6, 2004, pp.303-308.
    連結:
  18. [19] P. N. Vovos, A. E. Kiprakis, A. R. Wallace and G. P. Harrison, "Centralized and Distributed Voltage Control: Impact on Distributed Generation Penetration," IEEE Transactions on Power Systems, vol. 22, no. 1, 2007, pp. 476-483.
    連結:
  19. [20] F. Batrinu, E. Carpaneto, G. Chicco, M. D. Donno, R. Napoli, R. Napoli, R. Porumb, P. Postolache and C. Toader, "New Nested Evolutionary Programming Approach for Voltage Control Optimization with Distributed Generation," IEEE Electrotechnical Conference, vol. 3, no. 5, 2004, pp.1007-1010.
    連結:
  20. [21] A. P. S. Meliopoulos, G. J. Cokkinides and X. Y. Chao, "A new probabilistic power flow analysis method," IEEE Transactions on Power Systems, vol. 5, no. 1, 1990, pp. 182-190.
    連結:
  21. [22] C. L. Su, "Probabilistic load-flow computation using point estimate method," IEEE Transactions on Power Systems, vol. 20, no. 4, Nov. 2005, pp. 1843-1851.
    連結:
  22. [23] J. M. Morales and J. Perez-Ruiz, "Point estimate schemes to solve the probabilistic power flow," IEEE Transactions on Power Systems, vol. 22, no. 4, 2007, pp. 1594-1601.
    連結:
  23. [24] P. Zhang and S. T. Lee, "Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion," IEEE Transactions Power Systems, vol. 19, no. 1, 2004, pp. 676-682.
    連結:
  24. [25] H. Yu, C. Y. Chung, K. P. Wong, H. W. Lee and J. H. Zhang, "Probabilistic load flow evaluation with hybrid Latin hypercube sampling and Cholesky decomposition," IEEE Transactions Power Systems, vol. 24, no. 2, 2009, pp. 661-667.
    連結:
  25. [26] A. M. Geoffrionong and G. W. Graves, "Multicommodity Distribution System Design by Benders Decompostion," Management science, vol. 20, no. 5, 1974.
    連結:
  26. [27] M. Shahidehopour and F. Yong, "Benders decomposition: applying Benders decomposition to power systems," IEEE Power and Energy Magazine, vol. 3, 2005, pp. 20-21.
    連結:
  27. [28] S. Binato, M. V. F. Pereira and S. Granville, "A New Benders Decomposition Approach to Solve Power Transmission Network Design Problems," IEEE Transactions Power Systems, vol. 16, no. 2, 2001, pp. 235-240.
    連結:
  28. [29] H. M. Khodr, J. Martinez-Crespo, M. A. Matos and J. Pereira, "Distribution Systems Reconfiguration Based on OPF Using Benders Decomposition," IEEE Transactions Power Delivery, vol. 24, no. 4, 2009, pp. 2166-2176.
    連結:
  29. [30] W. S. Sifuentes and A. Vargas, "Hydrothermal Scheduling Using Benders Decomposition: Accelerating Techniques," IEEE Transactions Power System, vol. 22, no. 3, 2007, pp. 1351-1359.
    連結:
  30. [31] J. M. Alemany, F. Magnago, D. Moitre, "Benders Decomposition Applied to Security Constrained Unit Commitment," IEEE Latin America Transactions, vol. 11, no. 1, 2013, pp. 421-425.
    連結:
  31. [32] 羅一峰,應用累積元與基因演算法求解配電系統無效電力控制,碩士論文,中原大學電機工程系,桃園,2008。
    連結:
  32. [36] 陳慶守,配電系統運轉品質之模糊規劃與控制,碩士論文,國立成功大學工業與資訊管理學系,臺南,2006。
    連結:
  33. [39] 盧乃彥,應用田口-基因演算法於有效-無效功率調度最佳化,碩士論文,國立臺北科技大學電機工程系,臺北,2012。
    連結:
  34. [42] A. M. Geoffrion, "Generalized Benders Decomposition," Journal of Optimization Theory and Application, vol. 10, no.4, 1972, pp. 237-262.
    連結:
  35. [44] Y. Y. Hong and C. M. Liao, "Short - Term Scheduling of reactive power controllers," IEEE Transactions on Power Systems, vol. 10, no. 2, 1995, pp. 860-868.
    連結:
  36. [45] T. N. Santos, A. L. Diniz, "Feasibility and optimality cuts for the MultiStage benders decomposition approach: Application to the network constrained hydrothermal scheduling," IEEE Power & Energy Society General Meeting, Calgary, AB, 2009, pp. 1-8.
    連結:
  37. [47] A. Hughes, G. Jee, P. Hsiang, R. R. Shoults and M. S. Chen, "Optimal Reactive Power Planning," IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, no. 5, 1981, pp. 2189-2196.
    連結:
  38. [48] W. Hua, H. Sasaki, J. Kubokawa and R. Yokoyama, "An interior point nonlinear programming for optimal power flow problems with a novel data structure," IEEE Transactions on Power Systems, vol. 13, no. 3, 1998, pp. 870-877.
    連結:
  39. [49] M. Flynn, "Some Computer Organizations and Their Effectiveness," IEEE Transactions on Power Apparatus and Systems, vol. C-21, no. 9, 1972, pp. 948-960.
    連結:
  40. [50] J. Stone and F. Ercal, "Workstation clusters for parallel computing," IEEE Potentials, vol. 20, no. 2, 2001, pp. 31-33.
    連結:
  41. [53] Y. Yan and X. Zhang, "Profit-effective parallel computing," IEEE Concurrency, vol. 7, no. 2, 1999, pp. 65-69.
    連結:
  42. [54] 戴友椿,需求不確定下動態訂價模式之研究—以某筆記型電腦製造商為例,碩士論文,國立成功大學交通管理學系,台南,2006。
    連結:
  43. [57] 劉律伸,應用量子基因演算法求解最佳短期火力機組排程,碩士論文,國立臺北科技大學電機工程系,台北,2012。
    連結:
  44. [58] 彭冠霖,應用馬可夫模型與量子進化演算法求解配電系統無效電力控制,碩士論文,中原大學電機工程系,桃園,2009。
    連結:
  45. [4] 陳飛文,平行遺傳演算法於營建排程運用之探討,碩士論文,國立臺灣科技大學電機工程系,臺北,2001。
  46. [33] 許萬寶,以基因演算法進行電壓控制及虛功率調度研究,碩士論文,國立臺灣科技大學電機工程系,臺北,2004。
  47. [34] 陳在相、吳瑞南與張宏展,電力系統分析第三版,臺北:臺灣東華書局股份有限公司,2011,第205-266頁。
  48. [35] 盧豐彰,配電變電所虛功率與電壓控制之研究,博士論文,國立臺灣大學電機工程系,臺北,1996。
  49. [37] 鄭楨國,配電系統虛功率與電壓控制之研究,碩士論文,國立雲林科技大學電機工程系,雲林,1999。
  50. [38] 劉憲宗,考慮含分散式發電系統的配電系統虛功率與電壓控制,碩士論文,國立雲林科技大學電機工程系,雲林,2006。
  51. [40] 鄭仁福,結合基因演算法與模擬退火法在饋線上電容配置,碩士論文,國立臺北科技大學電機工程系,臺北,2001。
  52. [41] 廖淑鏵,以整數L-shaped方法求解多種產品儲運系統問題,碩士論文,國防管理學院後勤管理研究所,臺北,2003。
  53. [43] 洪穎怡,無效電力調度方案之評估與改善(期末報告),台灣電力公司81年度研究計畫,1992,pp. 5-39。
  54. [46] 廖慶榮,作業研究,臺北:三民書局股份有限公司,1994,第253-255頁。
  55. [51] 彭聖萍,平行模擬退火法於配水管網最佳化設計之應用,碩士論文,國立中興大學環境工程學系,台中,2003。
  56. [52] 龔力歐,應用平行計算於考量風險之多目標橋梁維護策略最佳化,碩士論文,國立臺灣科技大學營建工程系,台北,2011。
  57. [55] 杜政翰,顧客需求不確定下接單生產環境中單一產品BOM內各品項之生產規劃決策問題,碩士論文,國立中央大學工業管理研究所,桃園,2002。
  58. [56] Power Systems Test Case Archive,http://www.ee.washington.edu/research
Times Cited
  1. 高薪淙(2014)。應用基因演算法於考慮風力發電不確定之實功率-虛功率排程最佳化。臺北科技大學電機工程系研究所學位論文。2014。1-71。
  2. 凌士棠(2014)。考慮風力發電不確定性之有效─無效功率排程最佳化。臺北科技大學電機工程系研究所學位論文。2014。1-64。
  3. 徐亞信(2014)。以價格基礎為導向考慮風力之機組排程與風險評估。臺北科技大學電機工程系研究所學位論文。2014。1-57。