Title

電動車永磁馬達熱傳數值模擬及其散熱系統分析改良研究

Translated Titles

Research on the Effects of Heat Transfer Numerical Simulation on the Permanent Magnet of Electric Vehicle and the Improvement of Heat Dissipation System

DOI

10.6841/NTUT.2014.00092

Authors

李孟杰

Key Words

計算流體力學 ; 馬達熱傳 ; 田口實驗方法 ; 鰭片散熱 ; Computational Fluid Dynamic ; Motor Heat Transfer ; Taguchi Method ; Cooling Fins

PublicationName

臺北科技大學車輛工程系所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

吳浴沂

Content Language

繁體中文

Chinese Abstract

能源消耗與空氣汙染是近年來不斷討論的議題,電動車的發展被視為解決此問題的關鍵,但由於電動車馬達與傳統工業馬達相較更加要求體積與功率,因此散熱問題因應而生,本論文研究目的為建立永磁馬達熱傳模型,並針對其散熱系統提出改良的方式。由於永磁馬達內部元件眾多,因此使用熱阻形式的物理建模,對於馬達複雜的幾何結構在熱流分析上有其困難,因此本研究運用計算流體力學,其計算方式為將模型離散化成多個區域,且這些區域是由網格或格點形成,之後再使用合適的演算法來解求解。本研究在馬達熱傳模型建模上,特別針對馬達氣隙結構及定子與外殼間的接觸熱阻探討對於熱傳的影響,並將此結果建立入馬達熱傳模型,而模擬結果以分析溫度、壓力和流速情形,來對此馬達提出更為有效的散熱方式。研究上運用田口實驗方法,並以平板型及斷續型鰭片式散熱系統做更有效的散熱系統配置方式,運用此方法可以有效的降低模擬數量,但又不失最佳化的準確度。本研究結果顯示氣隙結構對於熱傳的影響性不大,而定子與外殼間的接觸熱阻則與表面粗糙度及面壓有關。流場分析結果發現原始馬達因鰭片型式緣故造成散熱不易,運用田口實驗方法顯示平版型鰭片式散熱系統有著較佳的散熱能力,可大幅降低原始馬達溫度。

English Abstract

Energy consumption and air pollution are the issues which been discussed in recent years, the development of electric vehicles is regarded as the key to solve this problem, but to coMPare with traditional motor, the elect motor need more power and lower volume and to meet these requirements the problem "heat dissipation" show up. The purposes of this research are to establish a permanent magnet motor thermal model and an improvement for the cooling system. In the research will use the computational fluid dynamic(CFD) instead of heat resistance of the physical modeling due to numerous internal components and itself complex geometry of permanent magnet motors. The CFD is to discrete the model to several regions and these regions are mold by elements and nodes then to use the appropriate algorithm for the result. This research of the motor thermal model especially regard to the reflection of the heat transfer in motor's air-gap and the contact heat resistance between stator and shell then insert the result to the motor thermal model. The result of flowfield analysis found that it’s not easy to do the heat dissipation on original motor due to the fin type and it got better outcome when change to flat fin type which experiment via Taguchi experiment method. By this way it can substantially decreases the temperature.

Topic Category 機電學院 > 車輛工程系所
工程學 > 交通運輸工程
Reference
  1. 6. Chunting Mi, Gordon R. Slemon, and Richard Bonert, “Modeling of Iron Losses of Permanent-Magnet Synchronous Motors,” IEEE Transactions On Industry Applications, Vol. 39, No. 3, May/June 2003.
    連結:
  2. 7. Katsumi Yamazaki, Yu Fukushima, and Makoto Sato Dept, “Loss Analysis of Permanent Magnet Motors with Concentrated Windings-Variation of Magnet Eddy Current Loss Due to Stator and Rotor Shapes, ” Electronics and Computer Engineering Chiba Institute of Technology Narashino, Japan.
    連結:
  3. 8. Katsumi Yamazaki, and Yoshiaki Seto, “Iron Loss Analysis of Interior Permanent-Magnet Synchronous Motors- Variation of Main Loss Factors Due to Driving Condition,” Ieee Transactions On Industry Applications, Vol. 42, No. 4, July/August 2006.
    連結:
  4. 10. William R. Finley, and Mark M. Hodowanec, “Selection of Copper vs. Aluminum Rotors for Induction Motors,” Copyright material IEEE, Paper No. PCIC-2000-19.
    連結:
  5. 11. Gareth Gilson, Dr. SJ Pickering, Dr. DB Hann, and Dr. C. Gerada, “Analysis of the End Winding Heat Transfer variation with Altitude in Electric Motors,” 2009 IEEE, 978-1-4244-4649-0/09/.
    連結:
  6. 12. G. Sooriyakumar, R Perryman, and S J Dodds, “Analytical Thermal Modelling For Permanent Magnet Synchronous Motors,” Upec 2007 192-196.
    連結:
  7. 13. Cassiano Antunes Cezario, and Hilton Penha Silva, “Electric Motor Winding Temperature Prediction Using a Simple Two-Resistance Thermal Circuit,” Proceedings of the 2008 International Conference on Electrical Machines, Paper ID 1383.
    連結:
  8. 14. Zimin W. Vilar, Dean Patterson, and Roger A. Dougal, “Thermal Analysis of a Single Sided Axial Flux Permanent Magnet Motor,”.
    連結:
  9. 16. Aldo Boglietti, Andrea Cavagnino, and David A. Staton, “TEFC Induction Motors Thermal Models: A Parameter Sensitivity Analysis,” IEEE Transactions On Industry Applications, Vol. 41, No. 3, May/June 2005.
    連結:
  10. 18. Ying Huai, Roderick V.N. Melnik, and Paul B. Thogersen “Computational analysis of temperature rise phenomena in electric induction motors,” 2003 Elsevier Science Ltd. All rights reserved, Applied Thermal Engineering 23 (2003) 779–795.
    連結:
  11. 19. Hongmin Li, “Cooling of a permanent magnet electric motor with a centrifugal impeller,” International Journal of Heat and Mass Transfer 53 (2010) 797–810.
    連結:
  12. 20. Christopher Micallef, Stephen J. Pickering, Kathy A. Simmons, and Keith J. Bradley, “Improved Cooling in the End Region of a Strip-Wound Totally Enclosed Fan-Cooled Induction Electric Machine,” IEEE Transactions On Industrial Electronics, VOL. 55, NO. 10, OCTOBER 2008.
    連結:
  13. 21. Desikan Bharathan, “Liquid Cooled Induction Motor: Computational Design, Heat Transfer Analysis, Parametric Study, and Performance Testing,” SAE International, 2013-01-0005 TSAE-13AP -0005 Published 03/25/2013.
    連結:
  14. 23. Jason Stafford, Ed Walsh, Vanessa Egan, Pat Walsh, and Yuri S. Muzychka, “A Novel Approach to Low Profile Heat Sink Design,” ASME, Journal of Heat Transfer Copyright 2010.
    連結:
  15. 24. Cheng-Hung Huang, and Wei-Lun Chang, “An inverse design method for optimizing design parameters of heat sink modules with encapsulated chip,” Applied Thermal Engineering 40 (2012) 216-226.
    連結:
  16. 25. Tu-Chieh Hung, Wei-Mon Yan, and Wei-Ping Li, “Analysis of heat transfer characteristics of double-layered microchannel heat sink,” International Journal of Heat and Mass Transfer 55 (2012) 3090–3099.
    連結:
  17. 26. Ko-Ta Chiang, Chih-Chung Chou, and Nun-Ming Liu, “Application of response surface methodology in describing the thermal performances of a pin-fin heat sink,” International Journal of Thermal Sciences 48 (2009) 1196–1205.
    連結:
  18. 27. C.J. Kobus , and T. Oshio, “Development of a theoretical model for predicting the thermal performance characteristics of a vertical pin-fin array heat sink under combined forced and natural convection with impinging flow,” International Journal of Heat and Mass Transfer 48 (2005) 1053–1063.
    連結:
  19. 28. Avram Bar-Cohena, Raj Bahadura, and Madhusudan Iyengarb, “Least-energy optimization of air-cooled heat sinks for sustainability-theory, geometry and material selection,” Energy 31 (2006) 579–619.
    連結:
  20. 29. Kyoungwoo Park, and Seungjae Moon, “Optimal design of heat exchangers using the progressive quadratic response surface model,” International Journal of Heat and Mass Transfer 48 (2005) 2126–2139.
    連結:
  21. 30. A. J. FOWLER, G. A. LEDEZMA, and A. BEJAN, “Optimal geometric arrangement of staggered plates in forced convection,” Heat Mass TransJer Vol. 40, No. 8, pp. 1795 1805, 1997.
    連結:
  22. 31. Ko-Ta Chiang, “Optimization of the design parameters of Parallel-Plain Fin heat sink module cooling phenomenon based on the Taguchi method,” International Communications in Heat and Mass Transfer 32 (2005) 1193–1201.
    連結:
  23. 36. Bar-Cohen, A., and Rohsenow, W. M. “Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates,” Journal of Heat Transfer, Vol. 106, pp. 116-123.
    連結:
  24. 37. 盧泰昌,以電液動技術增強垂直放置鰭片空氣對流熱傳性能研究,碩士學位,國立中央大學,中壢,民國100年。
    連結:
  25. 40. Ubowski, Lawrence Walter, and Esformes, Jack Leon “Embossed vortex generator enhanced plate fin,” EUROPEAN PATENT 430 852 A1.
    連結:
  26. 54. Youlong Wang, Wen Xuhui, Chen Chen and Li Yong “Design of Interior Permanent Magnet Motors with Improved Peak Power Based on the Optimization of Loss Distribution,” International Conference on Electrical Machines and Systems, Busan, Korea, Oct. 26-29, 2013.
    連結:
  27. 55. Noriya Nakao and Kan Akatsu “Torque Ripple Suppression of Permanent Magnet Synchronous Motors Considering Total Loss Reduction,” IEEE, 2013, 3880-3887.
    連結:
  28. 56. 謝旻甫,余守龍,高效率永磁無刷馬達之設計與分析,國立成功大學系統及船舶機電工程學系。
    連結:
  29. 58. 李林全,應用田口方法於溪釣釣具之研究,碩士論文,國立台北科技大學,台北,民國97年。
    連結:
  30. 1. http://www.moeaboe.gov.tw/, 經濟部能源局。
  31. 2. http://www.ibtimes.com/are-hybrid-vehicles-prius-leaf-volt-c-max-really-environmentally-safe-how-much-fossil-fuels-do-they, Electric Drive Transportation Association.
  32. 3. 薛乃綺,電動車-為傳統馬達產業找另一片藍海,經濟部技術處ITIS計畫成果,民國98年。
  33. 4. 黃得晉,電動車驅動馬達發展現況,金屬中心ITIS計畫,民國101年。
  34. 5. Gunnar Kylander, “Thermal modelling of small cage induction motors, ” Submitted to the School of Electrical and Computer Engineering Chalmers University of Technology.
  35. 9. Subramanian Manoharan, Nanjundappan Devarajan, Subbarayan M. Deivasahayam, and Gopalakrishnan Ranganathan, “Review on Efficiency Improvement in Squirrel cage Induction Motor by Using dcr Technology,” Journal of Electrical Engineering, vol. 60, NO. 4, 2009, 227–236.
  36. 15. Dave STATON, and Livio ŠUŠNJIĆ, “Induction Motors Thermal Analysis,” ISSN 0562-1887, UDK 621.313.33.
  37. 17. Patrick Lombard, Fabrice Marion, Dave Staton, and Tan Pham “Improve thermal analysis of motors by combining analytical method and finite element method in transient analysis, ”.
  38. 22. P. J. Yoon and M. Sunwoo, “Air Cooling Technology for Power Electronics Thermal Control,” International Journal of Vehicle Design, 2001, Vol. 26, No. 2-3, pp. 277-297.
  39. 32. Terence G. Ward, and General Motors Corporation, “Pin Fin Heat Sink And Pin Fin Arrangement Therein ,” United States Patent US 6,173,758 B1.
  40. 33. Klaus Otahal, and Josef Hofer, “Plate Heat Exchanger Having A Turbulence Generator,” United States Patent US 8,418,752 B2.
  41. 34. 强载炎,王明志,一种板翅式热交换器的传热翅片及其制备,中华人民共和国国家知识产权局,CN 102506603 A。
  42. 35. Paul Delpeyroux, “Heat Exchangers With Reinforced Fins,” United States Patent MARCH 29 1966, 3242984.
  43. 38. 田 灝,百葉窗式熱交換器之熱傳特性及其與交錯式熱交換器的性能比較分析,碩士學位,國立台灣科技大學,台北,民國98年。
  44. 39. 宋克传,王良壁,王良成,林志敏,张永恒,武祥,常立民,双面涡产生器式扁管管翅换热器,中华人民共和国国家知识产权局,CN 102121798 A。
  45. 41. 王益全,電動機原理與實用技術,中華人民共和國,科學出版社,2005,1-15, 163-200。
  46. 42. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, New York: John Wiley & Sons, 1995, pp. 150-155.
  47. 43. 黃紹軒,使用計算流體力學方法於缸內噴油引擎之初步設計,碩士論文,國立臺灣科技大學機械工程系,台北,民國98年。
  48. 44. 曾重仁,Fluent基礎課程講義,中央大學能源技術研究室,民國95年。
  49. 45. 張仁豪,永磁式直流無刷馬達熱流場之數值研究,碩士論文,國立屏東科技大學,屏東,民國99年。
  50. 46. Division of Engineering Brown University.
  51. 47. M. M. Yovanovich, J. R. Culham and P. Teertstra, “Calculating interface resistance,” Electronics Cooling May 1997.
  52. 48. http://wenku.baidu.com/view/70471a0f4a7302768e9939b7.html.
  53. 49. http://www.mgprecision.com.tw/resources/design-for-manufacture-tips-for-die-cast-parts.html.
  54. 50. https://tw.misumi-ec.com/contents/tech/, Copyright c MISUMI Corporation All Rights.
  55. 51. http://www.taisei-g.cn/, 泰生创研冲压件有限公司。
  56. 52. 鄧朝欽,無刷永磁馬達的熱傳分析,碩士論文,逢甲大學,台中,民國96年。
  57. 53. 陳育俊,高速主軸永磁無刷馬達之設計與分析,碩士論文,逢甲大學,台中,民國101年。
  58. 57. 李輝煌,田口方法品質設計的原理與實務,中華民國,高立圖書有限公司,民國89年,1-157。