Title

利用色彩濾片陣列及旋轉不變特性之影像鑑識系統

Translated Titles

Image Forensics System Utilizing Color Filter Array and Rotation Invariant Property

DOI

10.6841/NTUT.2010.00071

Authors

廖正豪

Key Words

影像鑑識 ; 來源辨識 ; 篡改偵測 ; 色彩濾片陣列 ; 複製區域偵測 ; 澤尼克動量 ; Image Forensics ; Source Identification ; Tamper Detection ; Color Filter Array ; Duplicated Region Detection ; Zernike Moments

PublicationName

臺北科技大學電機工程系研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

郭天穎

Content Language

繁體中文

Chinese Abstract

近幾年來,由於數位成像裝置與先進的影像編輯軟體廣泛且盛行地使用,使得數位影像容易被建立也容易遭受篡改。因此,數位影像鑑識技術演變為現今重要的議題。在本論文中,我們發展一多重偵測技術的影像鑑識系統,整合了兩種文獻方法及所提出的兩個新方法。 我們所提出的第一個方法是利用色彩濾片陣列(Color Filter Array, CFA)週期性質並改進文獻Expectation Maximization (EM)演算法以獲取最大事後機率(Maximum A Posterior Probability, MAP),可自動判別相片影像與電腦合成影像,且可自動找出遭受篡改之區域。第二個提出的方法著重於複製區域(Duplicated Region)的篡改偵測,偵測之方法為對測試影像分割為圓形區塊,計算每個圓形區塊之同心圓平均值及澤尼克動量(Zernike Moments)做為特徵向量,並將所有特徵向量進行字典式排序,隨後搜尋相似匹配對,最終由定義之相似度閥值來判斷相似的圓形區塊。與文獻方法相比,我們的方法能夠偵測複製區域篡改之任意角度旋轉與水平、垂直翻轉。實驗的結果與分析證實所提出之方法在篡改偵測中具有強健性。

English Abstract

In recent years, due to the widespread use of digital imaging devices and sophisticated image editing software, it is getting easier to create and alter digital images. As a result, digital image forensics techniques become an important issue nowadays. In this thesis, we develop an image forensics system based on multiple detection techniques, including two existing literature approaches and the proposed two new methods. Our first proposed method is based on the Color Filter Array (CFA) periodic characteristics. We improve the literature Expectation Maximization (EM) algorithm to get the Maximum A Posterior Probability (MAP) for distinguishing photographic images and photorealistic computer generated images. It can also helps localize tampered image regions automatically. The second proposed method concentrates on forgery detection on duplicated region. The suspicious image is split into circle blocks, and then the concentric circle mean and Zernike moments are calculated as the feature vectors for every circle block. The feature vectors are sorted by lexicographical order, and then searched for similar pairs. Thus, the similar circle blocks can be matched by a pre-defined similarity threshold. Compared with the literature methods, our methods can improve the detection of the duplicated region forgery with any angle rotation and vertical and horizontal flipping. The experimental results and analyses demonstrate that the proposed methods are robust in forgery detection.

Topic Category 電資學院 > 電機工程系研究所
工程學 > 電機工程
Reference
  1. [1] A. Haouzia and R. Noumeir, “Methods for Image Authentication: A Survey,” Springer Netherlands, Multimedia Tools and Applications, Vol. 39. No. 1, pp. 1-46, Aug. 2008.
    連結:
  2. [2] H. Farid, “Digital Image Forensics,” Scientific American Magazine, pp. 66-71, June 2008.
    連結:
  3. [3] H. T. Sencar and N. Memon, “Overview of State-of-the-Art in Digital Image Forensics,” Statistical Science and Interdisciplinary Research. World Scientific Press, Singapore, 2008.
    連結:
  4. [4] B. Mahdian and S. Saic, “Blind Methods for Detecting Image Fakery,” IEEE International Carnahan Conference on Security Technology, pp. 280-286, Oct. 2008.
    連結:
  5. [5] T. V. Lanh, K. S. Chong, S. Emmanuel and M. S. Kankanhalli, “A Survey on Digital Camera Image Forensic Methods,” IEEE International Conference on Multimedia and Expo, pp. 16-19, July 2007.
    連結:
  6. [6] W. Luo, Z. H. Qu, F. Pan and J. Huang, “A Survey of Passive Technology for Digital Image Forensics,” Frontiers of Computer Science in China, Vol. 1, pp. 166-179, May 2007.
    連結:
  7. [7] H. Cao and A. C. Kot, “Accurate Detection of Demosaicing Regularity for Digital Image Forensics,” IEEE Transactions on Information Forensics and Security, Vol. 4, No. 4, pp. 899-910, Dec. 2009.
    連結:
  8. [8] B. E. Bayer, “Color Imaging Array,” U.S. Patent, No. 3,971,065, Eastman. Kodak Company, July 1976.
    連結:
  9. [13] E. Chang, S. Cheung and D. Y. Pan, “Color Filter Array Recovery Using A Threshold-based Variable Number of Gradients,” SPIE, Vol. 3650, pp. 36-43, 1999.
    連結:
  10. [14] M. R. Teague, “Image Analysis via the General Theory of Moments,” Journal Optical Society of America, Vol. 70, pp. 920-930, Aug. 1980.
    連結:
  11. [15] A. Khotanzad and Y. H. Hong, “Invariant Image Recognition by Zernike Moments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No. 5, pp. 489-497, May 1990.
    連結:
  12. [16] S. X. Liao and M. Pawlak, “On the Accuracy of Zernike Moments for Image Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 12, pp. 1358-1364, Dec. 1998.
    連結:
  13. [17] Y. Xin, S. Liao and M. Pawlak, “Circularly Orthogonal Moments for Geometrically Robust Image Watermarking,” Pattern Recognition, Vol. 40, Issue 12, pp. 3740-3752, Dec. 2007.
    連結:
  14. [19] A. C. Popescu and H. Farid, “Exposing Digital Forgeries in Color Filter Array Interpolated Images,” IEEE Transactions on Signal Processing, Vol. 53, No. 10, pp. 3948-3959, Oct. 2005.
    連結:
  15. [20] A. C. Popescu and H. Farid, “Exposing Digital Forgeries by Detecting Traces of Resampling,” IEEE Transactions on Signal Processing, Vol. 53, No. 2, pp. 758-767, Feb. 2005.
    連結:
  16. [21] A. E. Dirik and N. Memon, “Image Tamper Detection based on Demosaicing Artifacts,” IEEE International Conference on Image Processing, pp. 1497-1500, Nov. 2009.
    連結:
  17. [25] G. H. Li, Q. Wu, D. Tu and S. J. Sun, “A Sorted Neighborhood Approach for Detecting Duplicated Regions in Image Forgeries Based on DWT and SVD,” IEEE International Conference on Multimedia and Expo, pp. 1750-1753, July 2007.
    連結:
  18. [26] Z. C. Lin, J. F. He, X. Tang and C. K. Tang; “Fast, Automatic and Fine-Grained Tampered JPEG Image Detection via DCT Coefficient Analysis,” Pattern Recognition, Vol. 42, Issue 11, pp. 2492-2501, Nov. 2009.
    連結:
  19. [28] R. Gonzalez and R. Woods, “Digital Image Processing,” Prentice-Hall, Inc., 2002.
    連結:
  20. [29] T. T. Ng, S. F. Chang, J. Hsu and M. Pepeljugoski, “Columbia Photographic Images and Photorealistic Computer Graphics Dataset,” Columbia University, ADVENT Technical Report #205-2004-5, Feb. 2005.
    連結:
  21. [30] D. Zhong and I. Defee, “Performance of Similarity Measures based on Histograms of Local Image Feature Vectors,” Pattern Recognition Letters, Vol. 28, Issue 15, pp. 2003-2010, Nov. 2007.
    連結:
  22. [31] Ulead PhotoImpact X3, InterVideo Digital Technology Corporation, Copyright(c) 1992-2007. http://www.corel.com/
    連結:
  23. [32] A. N. Myrna, M. G. Venkateshmurthy and C. G. Patil, “Detection of Region Duplication Forgery in Digital Images Using Wavelets and Log-Polar Mapping,”International Conference on Computational Intelligence and Multimedia Applications, Vol. 3, pp. 371-377, Dec. 2007.
    連結:
  24. [33]G. Liu, H. Li, Y. Dai and Z. Wang, “Detection of Image Region Duplication Forgery Using Model with Circle Block,” IEEE Conferences on Multimedia Information Networking and Security, Vol. 1, pp. 25-29, Nov. 2009.
    連結:
  25. [9] D. R. Cok, “Signal Processing Method and Apparatus for Producing Interpolated Chrominance Values In A Sampled Color Image Signal,” U.S. Patent, No. 4,642,678, 1986.
  26. [10] W. T. Freeman, “Median Filter for Reconstructing Missing Color Samples,” U.S. Patent, No. 4,724,395, 1988.
  27. [11] C. A. Laroche and M. A. Prescott, “Apparatus and Method for Adaptively Interpolating A Full Color Image Utilizing Chrominance Gradients,” U.S. Patent, No. 5,373,322, 1994.
  28. [12] J. F. Hamilton and J. E. Adams, “Adaptive Color Plan Interpolation in Single Sensor Color Electronic Camera,” US Patent, No. 5,629,734, 1997.
  29. [18] H. Farid, “Creating and Detecting Doctored and Virtual Images: Implications to the Child Pornography Prevention Act,” Department of Computer Science, Dartmouth College, Technical Report, TR2004-518, pp. 1-13, 2004.
  30. [22] J. Fridrich, D. Soukal and J. Lukáš; “Detection of Copy-Move Forgery in Digital Images,” Proceedings of Digital Forensic Research Workshop, Cleveland, OH, Aug. 2003.
  31. [23] A. C. Popescu and H. Farid, “Exposing Digital Forgeries by Detecting Duplicated Image Regions,” Department of Computer Science, Dartmouth College, Technical Report TR2004-515, pp. 1-11, 2004.
  32. [24] W. Luo, J. Huang and G. Qiu, “Robust Detection of Region-Duplication Forgery in Digital Image,” International Conference on Pattern Recognition, Vol. 4, pp. 746-749, 2006.
  33. [27] H. Farid, “Exposing Digital Forgeries from JPEG Ghosts,” IEEE Transactions on Information Forensics and Security, Vol. 4, No. 1, pp. 154-160, Mar. 2009.
Times Cited
  1. 卓宥亦(2013)。利用多尺度區域雜訊不一致性之影像拼接偵測。臺北科技大學電機工程系所學位論文。2013。1-61。