Title

矩形流道裝置壓電風扇於散熱鰭片間之熱流特性分析

Translated Titles

Numerical Study of Thermal and Flow Characteristics of Piezoelectric Fan Enclose Heat Sink Fins in Rectangular Channel

Authors

盧俊吉

Key Words

計算流體力學 ; 電子冷卻 ; 壓電風扇 ; 散熱器 ; Computational Fluid Dynamics ; Electronic Cooling ; Piezoelectric fan ; Heat sink

PublicationName

臺北科技大學車輛工程系所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

蔡國隆

Content Language

繁體中文

Chinese Abstract

近年來電子產品趨向輕薄化發展,散熱問題面臨更大的挑戰,壓電風扇具有體積小、噪音小、低耗能、頻率響應快速等優點,正好符合電子產品嚴格的散熱需求。壓電材料的逆電壓效應使壓電晶片產生高頻振盪,薄板上下擺動造成周圍流體流動產生對流效應,進而達到散熱效果。本研究將壓電風扇裝置於散熱鰭片間,使低溫流體更有效的導入散熱器內,將熱能於散熱鰭片間混合帶走,利用計算流體力學軟體ANSYS CFD/Fluent模擬,並以暫態流場探討各項參數下對於整體冷卻性能之差異,探討參數包括壓電風扇尖端至散熱器前端之距離(Lg)、鰭片列(n)、鰭片高度(Hf)與鰭片間距(G)等,經求解器計算後,以紐賽爾數(Nu)和熱阻值(Rth)等數值作為性能表現依據。研究結果顯示,當壓電風扇尖端放置於散熱器前端,其散熱效果較佳,隨著鰭片高度上升,有效增加散熱面積,提升散熱性能,而散熱器封閉與否取決於鰭片數與壓電風扇擺放位置。

English Abstract

The converse piezoelectric effects of piezoelectric material make piezoelectric chip bringing high frequency damping, plastic fan flapping fluid around bringing convection, and then achieve heat dissipation. This study discuss that piezoelectric fan enclose heat sink fins let cryogenic fluid into heat sink efficacious and heat is took away by heat sink fins. Using fluid dynamic software, ANSYS CFD/Fluent, calculate transient flow field in different parameters, it includes the distance between piezoelectric fan and heat sink(Lg), fin number(n), fin height(Hf), fin gap(G). The performance of standard depends on Nusselt number(Nu) and thermal resistance(Rth) by solver. As the result, when piezoelectric fan replace on front of heat sink, the heat dissipation is useful. According to fin height raised and heat dissipation area increased enhances cooling performance effective. Whether the heat sink confined depends on fin number and piezoelectric fan position.

Topic Category 機電學院 > 車輛工程系所
工程學 > 交通運輸工程
Reference
  1. [1] M. Toda, “Theory of air flow generation by a resonant type PVF2 bimorph cantilever vibrator,” Ferroelectrics, vol. 22, no. 8, 1979, pp. 911–918.
    連結:
  2. [2] M. Choi, C. Cierpka and Y-H. Kim, “Vortex formation by a vibrating cantilever,” Journal of Fluids and Structures, vol. 31, 2012, pp. 67-78.
    連結:
  3. [3] T. Acikalin and S. V. Garimella, “Analysis and prediction of the thermal performance of piezoelectrically actuated fans,” Heat Transfer Engineering, vol. 30, no. 6, 2009, pp. 487-498.
    連結:
  4. [4] T. Acikalin, S. V. Garimella, A. Raman and J. Petroski, “Characterization and optimization of the thermal performance of miniature piezoelectric fans,” International Journal of Heat and Fluid Flow, vol. 28, 2007, pp. 806-820.
    連結:
  5. [5] T. Acikalin, S. M. Wait, S. V. Garimella and A. Raman, “Experimental Investigation of the Thermal Performance of Piezoelectric Fans,” Heat Transfer Engineering, vol. 25, Issue 1, 2004, pp. 4-14.
    連結:
  6. [8] S. F. Liu, R. T. Huang, W. J. Sheu and C. C. Wang, “Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement,” International Journal of Heat and Mass Transfer, vol. 52, 2009, pp. 2565-2570.
    連結:
  7. [9] J. H. Yoo, J. I. Hong and C. Y. Park, “Characteristics of Piezoelectric Fails using PZT Ceramics,” Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials, 1997.
    連結:
  8. [10] M. Kimber, S. V. Garimella and A. Raman, “Local Heat Transfer Coefficients Induced by Piezoelectrically Actuated Vibrating Cantilevers,” International Journal of Heat Transfer, vol. 129, no. 9, 2007, pp. 1168-1176.
    連結:
  9. [11] M. Kimber and S. V. Garimella, “Measurement and prediction of the cooling characteristics of a generalized vibrating piezoelectric fan,” International Journal of Heat and Mass Transfer, vol. 52, no. 19-20, 2009, pp. 4470-4478.
    連結:
  10. [12] M. Kimber and S. V. Garimella, “Cooling Performance of Arrays of Vibrating Cantilevers,” International Journal of Heat Transfer, vol. 131, 2009, pp. 1114011-1114018.
    連結:
  11. [14] H. Y. Li and S. M. Chao, “Measurement of performance of plate-fin heat sinks with cross flow cooling,” International Journal of Heat and Mass Transfer, vol. 52, no. 13-14, 2009, pp. 2949-2955.
    連結:
  12. [15] H. Y. Li, S. M. Chao, J. W. Chen and J. T. Yang, “Thermal performance of plate-fin heat sinks with piezoelectric cooling fan,” International Journal of Heat and Mass Transfer, vol. 57, 2013, pp. 722-732.
    連結:
  13. [17] D. K. Kim, J. K. Bae and S. J. Kim, “Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow,” IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 2008, pp. 360-366.
    連結:
  14. [19] J. Petroski, M. Arik and M. Gursoy, “Optimization of Piezoelectric Oscillating Fan-Cooled Heat Sinks for Electronics Cooling,” IEEE Transactions on Components and Packaging Technologies, vol. 33, no. 1, 2010, pp. 25-31.
    連結:
  15. [20] C. B. Coetzer and J. A. Visser, “Compact Modeling of Forced Flow in Longitudinal Fin Heat Sinks With Tip Bypass,” Journal of Electronic Packaging, vol. 125, 2003, pp. 319-324.
    連結:
  16. [21] H. Jonsson and B. Palm, “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions,” IEEE Transactions on Components and Packaging Technologies, vol. 23, no. 1, 2000, pp. 47-54.
    連結:
  17. [23] R. Singh, M. Mochizuki, M. A. Shahed, Y. Saito, A. Jalilvand, M. Matsuda, Y. Kawahara and K. Goto, “Low Profile Cooling Solutions for Advanced Packaging Based on Ultra-Thin Heat Pipe and Piezo Fan,” 3rd IEEE CPMT Symposium Japan, Kyoto, 2013.
    連結:
  18. [25] H. K. Ma, H. C. Su and W. F. Luo, “Investigation of a piezoelectric fan cooling system with multiple magnetic fans,” Sensors and Actuators A: Physical, vol. 189, 2013, pp. 356-363.
    連結:
  19. [6] M. K. Abdullah, B. H. Murni, M. Z. Abdullah, M. A. Mujeebu, F. Hussin, H. Yusoff, N. C. Ismail, K. A. Ahmad and Z. Mohd Ripin, “Heat transfer enhancement using piezoelectric fan in electronic cooling – experimental and numerical observations,” Journal of Thermal Science and Technology, vol. 32, 2012, pp. 41-50.
  20. [7] P. Burmann, A. Raman and S. V. Garimella, “Dynamics and topology optimization of piezoelectric fans,” IEEE Transactions on Components and Packaging Technologies, vol. 4, no. 4, 2003, pp. 592-600.
  21. [13] Z. M. Fairuz, S. F. Sufian, M. Z. Abdullah, M. Zubair and M. S. Abdul Aziz, “Effect of piezoelectric fan mode shape on the heat transfer characteristics,” International Communications in Heat and Mass Transfer, vol. 52, 2014, pp. 140-151.
  22. [16] K. H. Tseng, M. Mochizuki, K. Mashiko, T. Kosakabe, E. Takenaka, K. Yamamoto and R. Kikutake, “Piezo Fan for Thermal Management of Electronics,” Fujikura Technical Review, no. 39, 2010.
  23. [18] K. M. Ng, I. Sauciuc, H. Wada and N. Tanaka, “Cooling Performance of Piezoelectric Fan in Notebook System,” 34th International Electronics Manufacturing Technology Conference, Melaka, 2010.
  24. [22] R. Schacht, A. Hausdorf, B. Wunderle and B. Michel, “Frictionless Air Flow Blade Fan for Thermal Management of Electronics,” 13th IEEE Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, 2012, pp. 1320-1326.
  25. [24] H. K. Ma, H. C. Su, C. L. Liu and W. H. Ho, “Investigation of a piezoelectric fan embedded in a heat sink,” International Communications in Heat and Mass Transfer, vol. 39, 2012, pp. 603-609.