透過您的圖書館登入
IP:54.163.62.42
  • 學位論文

使用吩嗪類有機染料結合FAD輔因子與金屬複合薄膜搭配多層奈米碳管對於NADH、H2O2、S2O82-與甲醇電催化反應研究

Electrocatalytic Reaction of NADH, H2O2, S2O82- and CH3OH using Phenazine based Organic Dyes Binding FAD Cofactor and Metal Hybrid Film with Multi-wall Carbon Nanotube

指導教授 : 陳生明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


第一部分: 我們成功使用聚中性紅(PNR)、黃素腺嘌呤二核苷酸(FAD)與多層奈米碳管(MWCNT)製備PNR-FAD/MWCNT修飾薄膜成功偵測菸醯胺腺嘌呤二核苷酸(NADH)和過氧化氫(H2O2)。PNR聚合後帶有正電性因此容易誘導帶負電之FAD共沉積,且MWCNT提供了更多的比表面積讓更多的PNR與FAD共沉積於電極表面,PNR-FAD/MWCNT修飾薄膜能有效降低催化NADH與H2O2的過電位至0.05 V和 -0.1 V(於Ag/AgCl參考電極下),使用旋轉圓盤電極(rotating disk electrode, RDE)探討PNR-FAD/MWCNT修飾薄膜動力學常數(kkin),NADH和H2O2分別為1.6×104 M-1 s-1和2×105 M-1 s-1,接著使用安培法(amperometric)即時偵測NADH與H2O2濃度變化,濃度線性區間為1.3 – 933.3 μM和1 – 2555 μM、靈敏度分別為457.2 μA mM-1 cm-2與10.1 μA mM-1 cm-2與最低濃度偵測極限1.3 μM和0.1 μM (S/N = 3),經實驗結果證實PNR-FAD/MWCNT修飾薄膜成功製備雙測定型生物感測器可測定NADH與H2O2。 第二部分: 我們使用聚亮甲酚藍(PBCB)與多層奈米碳管(MWCNT)製備複合薄膜電極,首先我們比較有無添加MWCNT對修飾薄膜有和差異,經由添加前後的表面覆蓋率來表明差異性,證實添加MWCNT後可使PBCB與BCB沉積量上升並降低聚合物鏈的糾纏情況,PBCB/MWCNT修飾薄膜降低了催化物過硫酸鹽的過電位和更大的訊號電流,PBCB/MWCNT修飾薄膜於不同pH值與掃描速率下表現出優異的穩定性,定電位於-0.03 V使用安培法測得的濃度線性區間為10-5 – 10-4 和3.1×10-3 – 1.01×10-1 M、靈敏度為124.5與21.2 μA mM-1 cm-2,最低濃度偵測極限為1 μM (S/N = 3),由於PBCB/MWCNT/GCE具有偵測方式操作簡單、低的偵測極限、低成本等特點,所以用於偵測過硫酸鹽上具有良好的應用性質。 第三部分: 我們使用金屬銅(Cu)、金屬鎳(Ni)與多層奈米碳管(MWCNT)使用電化學技術製備一奈米複合材料修飾電極(Ni/Cu/MWCNT/GCE),這種奈米複合材料只需簡單幾道簡單的電化學步驟即可製備,Ni/Cu/MWCNT奈米修飾薄膜在鹼性溶液(pH = 13)中能於低電位中(0.6 V)有效的催化甲醇,Ni/Cu/MWCNT奈米修飾薄膜偵測甲醇的濃度線性區間為1 – 10 μM和24.7 – 74.1 mM、靈敏度為5×104 μA mM-1 cm-2與115 μA mM-1 cm-2,甲醇的最低濃度偵測極限為1 μM (S/N = 3),由於Ni/Cu/MWCNT/GCE具有高選擇性、高靈敏度、低的偵測極限、製備方式簡單、低成本和偵測方式操作簡單,所以Ni/Cu/MWCNT/GCE可以被用來當作甲醇感測器應用於食品工業中。

並列摘要


Part I: A bifunctional nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H2O2) biosensor has been successfully fabricated using poly(neutral red) (PNR), flavin adenine dinucleotide (FAD) and multi-walled carbon nanotubes (MWCNT). The electro-codeposition of PNR and FAD on MWCNT electrode can be easily carried out involving the positively charged PNR formation which induces the negatively charged FAD to codeposit on electrode surface. The PNR-FAD-MWCNT hybrid composite can effectively lower over-potential to 0.05 V and -0.1 V for NADH oxidation and H2O2 reduction, respectively. The kinetic constant, kkin, evaluated by voltammetry using a PNR-FAD-MWCNT rotating disk electrode (RDE), provided values of 1.6×104 M-1 s-1 and 2×105 M-1 s-1 for the electrocatalytic reaction of NADH and H2O2, respectively. Amperometric measurements presented that the active composite exhibited good performance with linear concentration ranges of 1.3 – 933.3 μM and 1 – 2555 μM, sensitivity of 457.2 μA mM-1 cm-2 and 10.1 μA mM-1 cm-2, and detection limits of 1.3 μM and 0.1 μM (S/N = 3), for NADH and H2O2, respectively. It allows the possibility that a bifunctional biosensor can be easily prepared and used for switchable determination of NADH and H2O2. Part II: Poly(brilliant cresyl blue) (PBCB) has been successfully electrodeposited on multi-walled carbon nanotubes (MWCNT) to form PBCB-MWCNT modified electrode by repeatedly cyclic voltammetry. MWCNT enables the higher current response in the hybrid composite when compared to the PBCB formation without using MWCNT. Well redox peak current development in the film formation indicates that MWCNT provides more electroactive surface areas for PBCB deposition and reduces the disorder situation of polymer chains. It is stable in various scan rates and different pH conditions. The surface coverage of BCB and PBCB was estimated in 7.4×10-11 and 7.6×10-11 mol cm-2 at PBCB-MWCNT/GCE higher than that at PBCB/GCE. More deposition amount indicates that MWCNT can provide more space for both BCB and PBCB. It shows lower over-potential and higher current response to persulfate when compared to the bare and PBCB electrodes. More obvious reduction currents are found using LSV technique. Applied potential at -0.03 V, it shows the sensitivity of 124.5 and 21.2 μA mM-1 cm-2 for the linear concentration range of 10-5 – 10-4 and 3.1×10-3 – 1.01×10-1 M, and detection limit of 1 μM (S/N = 3). Part III: This work presents that electrocatalytic oxidation of methanol can be enhanced by the hybrid nanocomposites of amino-functionalized multi-walled carbon nanotubes (MWCNT) decorated with nickel and copper nanoparticles (NPs). This active hybrid composite can be simply prepared by the electrodeposition of nickel and copper on the MWCNT-modified electrode. It effectively catalyzes methanol in the alkaline solution (pH 13) with high current response and low overpotential at about 0.6 V. As a methanol electrochemical sensor, it provides two specific linear response ranges of 1 – 10 μM and 24.7 – 74.1 mM, with sensitivity of 5×104 μA mM-1 cm-2 and 115 μA mM-1 cm-2, respectively. Particularly, it shows a superior detection limit of 1 μM (S/N = 3) with no interference of ethanol. It is an efficient promising methanol sensor in food industry due to high selectivity, high sensitivity, low detection limit, simplicity, and low cost.

參考文獻


18. 王士弘,導電高分子與奈米碳管結合染料和苯醌薄膜修飾電極之電化學性質研究,國立臺北科技大學化學工程研究所碩士論文,2010。
6. A.Sternesjo, "Laboratory Profile: Laying the groundwork for DNA-based clinical methods," Anal. Chem., vol. 226, 1995, pp. 175–180.
7. M. A. Glimartin, J. P.Hart, "Sensing with chemically and biologically modified carbon electrodes. A review," Analyst, vol. 120, no. 4, 1995, pp. 1029–1045.
8. M. Hubert, S. Coralie, M. Claude, J.R. Nicole, S. P. Alexey, "Impedance analysis of Si/SiO2 heterostructures grafted with antibodies: an approach for immunosensor development," J. Electroanal. Chem., vol. 406, no. 1–2, 1996, pp. 53–58.
9. P. N. Bartlett, J. M. Cooper, "Structural and electrochromic properties of sol-gel derived Ni(Si)-oxide films," J. Electroanal. Chem., vol. 362, 1988, pp. 1–5.

延伸閱讀