Title

潛弧奈米合成系統製備金奈米顆粒之研究

Translated Titles

The Preparation of Gold Nanoparticles by Submerged Arc Nanoparticles Synthesis System

Authors

田德之

Key Words

奈米 ; 電弧放電 ; Gold Nanoparticle ; SANSS

PublicationName

臺北科技大學機電整合研究所學位論文

Volume or Term/Year and Month of Publication

2006年

Academic Degree Category

碩士

Advisor

鐘清枝

Content Language

英文

Chinese Abstract

對在目前研究領域裡,奈米金顆粒之特性與製造是相當熱門的題目之一,其主要原因是金顆粒在奈米尺度下具有一些獨特的光學、電學、觸媒與其他的特性,未來可應用在相當多的地方。迄今製造金奈米顆粒的方法有相當多種,例如:光分解法、放射還原法、超音波還原法、化學還原金屬鹽類等等方法。然而,奈米金在應用時還是有些問題存在,那就是穩定性不高且容易團聚而失去原有的奈米金特性。目前解決此問題的方式是,如果在奈米金顆粒表面,包附上一層穩定劑,如此一來就可以讓顆粒表面帶有電位,讓顆粒間產生足夠排斥力而避免再度聚集,達到保護奈米顆粒之目的。 本研究主要是使用潛弧奈米合成系統(SANSS),用來製造未加任何穩定劑之奈米金顆粒。應用此創新的方式,我們已經可以相當成功的將奈米金製作於純水當中,且無需加入任何穩定劑或浮懸劑。接著就針對奈米金顆粒之特性做下列分析,包括:粒徑分佈、表面電位、光譜分析、TEM/SEM分析、XRD分析等等。在光譜分析上我們可以證明水相浮懸之奈米金表面上特有的電漿反應,而在TEM/SEM分析上可得粒徑約在20~50奈米,於XRD分析上發現奈米金的結晶結構,並於EDXS分析上證明奈米金的存在。 經由實驗可證明,使用潛弧奈米合成系統(SANSS)來製造奈米金於純水中,具有有成本低、效率高,還對環境友善,沒有污染問題。

English Abstract

Nanoparticles study has become the target of novel interest in science and the fabrication and characterization of colloidal gold nanoparticles have attracted considerable attention as a result from both fundamental and applied research due to their unique optical, electrical and catalytic properties and other properties. To date, many process including photolysis or radiolysis of metal salts, ultrasonic reduction of metal salts, chemical reduction of metal salts, etc., have been used to prepare gold nanoparticles. However, the stability of colloidal gold is a major bottleneck to practical applications because colloidal particles tend to aggregate in solution. One of the strategies is to protect colloidal gold with stabilizer, which can interact at the particle surface to form a zeta potential barrier, which can form a repel force in order to lead colloidal gold separated from each other, and also preventing them from agglomeration. Without stabilizer, the preparation of gold nanoparticles synthesized by the Submerge Arc Nanoparticles Synthesis System (SANSS) is proposed for this study. By this innovative system approach, synthesis of Gold nanoparticles in deionized water has been successfully established. The aim of this work to characterize gold nanoparticles, including the size distribution, Zeta Potential, thus suggests that gold nanoparticles suspend in deionized water as colloidal form. The UV-vis absorbance demonstrates the unique surface plasmon resonance of Au nanoparticles suspended in deionized water. Microstructure of nano-sized gold particles examined by TEM and SEM shows the particles size around 20~50nm, as determined by XRD, crystalline structure of nano-scale gold deposit on quartz surface clearly show its unique finger print, along with EDXS the chemical composition of Gold nanoparticles have been proved. The experimental results suggest that fabrication of the Gold nanoparticles in deionized water without surfactant by the Submerge Arc Nanoparticles Synthesis System (SANSS) is alternative, inexpensive, effective and environmentally friendly method.

Topic Category 機電學院 > 機電整合研究所
工程學 > 電機工程
Reference
  1. 2. T.M. Davis and W.D. Wilson, “Determination of the Refractive Index Increments of Small Molecules for Correction of Surface Plasmon Resonance Data,” Analytical Biochemistry, Vol.284, October 9, 2000, pp.348-353.
    連結:
  2. 3. M.C. Daniel and D. Astruc, “Gold nanoparticles: Assembly, supramolecular chemistry, quantum size related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev., Vol.104, pp.293-346.
    連結:
  3. 4. J. Turkevitch, P. C. Stevenson and J. Hillier. “Nucleation and Growth Process in the Synthesis of Colloidal Gold. Discuss,” Faraday Soc., Vol.11, 1951, pp.55-75.
    連結:
  4. 5. D. Bethell, M. Brust, D.J. Schiffrin and C.Kiely, “From Monolayers to Nanostructured Materials: An Organic Chemist’s View of Self-Assembly,” J. Electroanal.Chem., Vol.409, 1996, pp.137-143.
    連結:
  5. 6. M. Brust and C.J. Kiely, “Some Recent Advances in Nanostructure Preparation from Gold and Silver: A Short Topical Review.” Colloids Surf. A: Physicochem, Eng. Asp., Vol.202, 2002, pp.175-186.
    連結:
  6. 10. L. Wang and E.K. Wang, Electrochem. Commun, Vol.6, 2004, pp.49.
    連結:
  7. 14. M. Haruta, Catal. Today, 36, 1997, pp.153.
    連結:
  8. 15. M. Haruta, T. Kobayashi, H. Sano and N. Yamada, Chem. Lett., 1987, pp.405.
    連結:
  9. 20. M.A. Hayat, “Colloidal Gold: Principles Methods and Applications,” San Diego, Academic Press, 1989, pp.1–2.
    連結:
  10. 21. C.X. Lei, H. Wang, G.L. Shen and R.Q. Yu, Electroanalysis, Vol.16, 2004, pp. 736.
    連結:
  11. 22. Y. Xiao, H.X. Ju and H.Y. Chen, Anal. Chim. Acta, Vol.391, 1999, pp.73.
    連結:
  12. 24. A.M. Gadalla and N.F. Petrofes, “Surfaces of Advanced Ceramic Composites Formed By Electrical Discharge Machining,” Materials and Manufacturing Processes, Vol.5, No.2, 1990, pp.253-271.
    連結:
  13. 25. J. H. Zhang, T. C. Lee and W. S. Lau, “Study on the electro-discharge machining of a hot pressed aluminum oxide based ceramic”, Journal of Material processing Technology, Vol. 63, 1997, pp.908-912.
    連結:
  14. 26. Philip T. Eubank, Mukund R. Patel, Maria A. Barrufet, and Bedri Bozurt, “Theoretical models of the electrical discharge machining process. Ⅲ. The variable mass, cylindrical plasma model,” J. Appl. Phys., Vol.73, No.11, June 1, 1993.
    連結:
  15. 27. B.W. Pillans, M.H. Evensen, H.F. Taylor, and P.T. Eubank, Lianxi Ma, “Fiber optic diagnostic techniques applied to electrical discharge machining sparks,”J. Appl. Phys., Vol.91, No.4, February 15, 2002.
    連結:
  16. 28. M. Takagi and J. Phys. Soc. Jpn., Vol.9, 1954, pp. 359.
    連結:
  17. 29. T. Ohashi, K. Kuroda and H. Saka, Philos. Mag., B 65, 1992, pp.1041.
    連結:
  18. 30. K. Sasaki and H. Saka, Philos. Mag., A 63, 1991, pp.1207.
    連結:
  19. 31. Q. Jiang, H.X. Shi and M. Zhao, J. Chem. Phys., Vol.111, 1999, pp.2176.
    連結:
  20. 32. A.N. Goldstein, C.M. “Ether and A.P. Alivisatos,” Science, Vol.256, 1992, pp.1425.
    連結:
  21. 35. Daryl D. DiBitonto, Philip T. Eubank, Mukund R. Patel, and Maria A. Barrufet, “Theoretical models of the electrical discharge machining process.Ⅰ. A simple cathode erosion model,” J. Appl. Phys., Vol.66, No.9, November 1, 1989.
    連結:
  22. 36. Mukund R. Patel, Maria A. Barrufet, Philip T. Eubank, and Daryl D. DiBitonto, “Theoretical models of the electrical discharge machining process. Ⅱ. The anode erosion model,” J. Appl. Phys., Vol.66, No.9, November 1, 1989.
    連結:
  23. 39. P. Englebienne, “Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes,” Analyst. Vol.123 (7), 1998, pp.1599-603.
    連結:
  24. 40. Ho Chang, Tsing-Tshih Tsung, Liang-Chia Chen, Yi- Cheng Yang, Hong-Ming Lin and Chung-Kwei Lin, “Nanoparticle Suspension Preparation Using Arc Spray Nanoparticle Synthesis System Combined with ultrasonic vibration and rotating electrode,” accepted and to be published in International Journal of Advanced Manufacturing Technology, #2615, 2003.
    連結:
  25. 41. Tsing-Tshih Tsung, Ho Chang, Liang-Chia Chen, Ming-Kun Liu, Hong-Ming Lin, Chung-Kwei Lin, “Process Development of a Novel Arc Spray Nanoparticle Synthesis System (ASNSS) for Preparation of TiO2 Nanoparticle Suspension,” International Journal of Advanced Manufacturing Technology, Published Online,19 May, 2004.
    連結:
  26. REFERENCES
  27. 1. M. Asada, Y. Miyamoto and Y. Suematsu, “Quantum Electron,” IEEE J., Vol.22, 1986, pp.1915.
  28. 7. T.M. McEvoy, D.J. Pe´na, M.D. Musick and J.N. Richardson, J. Electroanal. Chem., Vol.566, 2004, pp.121.
  29. 8. H. Cai, C. Xu, P.G. He and Y.Z. Fang, J. Electroanal. Chem., Vol.510, 2001, pp.78.
  30. 9. Y.G. Liu, F. Yin, Y.M. Long, Z.H. Zhang and S.Z. Yao, J. Colloid Interface Sci., Vol.258, 2003, pp.75.
  31. 11. C.R. Raj, T. Okajima and T. Ohsaka, J. Electroanal. Chem., Vol.453, 2003, pp.127.
  32. 12. H.X. Ju, S.Q. Liu, B.X. Ge, F. Lisdat and F.W. Scheller, Electroanalysis, Vol.14, 2002, pp.141.
  33. 13. G.C. Bond and D.T. Thompson, Catal. Rev. Sci. Eng., Vol.41, 1999, pp.319.
  34. 16. A.C. Gluhoi, S.D. Lin and B.E. Nieuwenhuys, Catal. Today, Vol.90, 2004, pp.175.
  35. 17. Zwijnenburg, M. Makkee and J.A. Moulijn, Appl. Catal., A 270, 2004, pp.49.
  36. 18. V. Idakiev, T. Tabakova, Z.-Y. Yuan and B.-L. Su, Appl. Catal., A 270, 2004, pp.135.
  37. 19. M.A. Centeno, M. Paulis, M. Montes and J.A. Odriozola, Appl. Catal., A 234, 2002, pp.65.
  38. 23. S.L. Goodman, G.M. Hodges and D.C. Livingston, “A review of the colloidal Gold marker system,” Scan Electron Microsc, Vol.133, 1980, pp. 46.
  39. 33. SAVIAC Proceedings 66th Shock and Vibrations Symposium, Biloxi, MS, Vol.l.2, November 1995, pp265-276.
  40. 34. The Journal of the Acoustical Society of America, Vol.101, Issue 4, 1997, pp.908-1920.
  41. 37. M.R. Patel, M.A. Barrufet, and P.T. Eubank, “in proceeding of the 11th International Steam Conference,” edited by M. Pichal and O. Sifner (Hemisphere, New York, 1990).
  42. 38. 張招賢,鈦電極工學,冶金工業出版社,2000 年10 月。